基于美拉德反应产物作为荧光和共振瑞利散射的传感平台快速检测阿斯巴甜
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:A Novel Sensing Platform of Fluorescence and Resonance Rayleigh Scattering for Fast Detection of Aspartame Based on Maillard Reaction Product
  • 作者:赵艳梅 ; 张小林 ; 周尚 ; 杨季冬 ; 高佩
  • 英文作者:ZHAO Yanmei;ZHANG Xiaolin;ZHOU Shang;YANG Jidong;GAO Pei;School of Environment and Chemical Engineering, Chongqing Three Gorges University;Department of Chemistry, Eastern Kentucky University;School of Chemistry and Chemical Engineering,Yangtze Normal University;School of Chemistry and Chemical Engineering, Southwest University;Department of Mathematics, Sciences and Technology, Paine College;
  • 关键词:美拉德反应 ; 荧光探针 ; 共振瑞利散射探针 ; 阿斯巴甜
  • 英文关键词:Maillard reaction;;fluorescent probe;;resonance Rayleigh scattering probe;;Aspartame
  • 中文刊名:SXHC
  • 英文刊名:Ecology and Environmental Monitoring of Three Gorges
  • 机构:重庆三峡学院环境与化学工程学院;东肯塔基大学化学系;长江师范学院化学化工学院;西南大学化学化工学院;佐治亚州佩恩学院数学、科学与技术系;
  • 出版日期:2019-06-17
  • 出版单位:三峡生态环境监测
  • 年:2019
  • 期:v.4;No.13
  • 基金:国家自然科学基金(21175015,21475014)
  • 语种:中文;
  • 页:SXHC201902009
  • 页数:17
  • CN:02
  • ISSN:50-1214/X
  • 分类号:68-84
摘要
源于葡萄糖和L-精氨酸(glucose and L-Arginine,GLA)的美拉德反应的产物与Cu~(2+)的螯合作用形成具有良好的光学活性和水溶性的GLA-Cu~(2+)复合物,建立荧光(fluorescence,FL)和共振瑞利散射(resonance rayleigh scattering,RRS)的新型传感平台,可用来检测阿斯巴甜(Aspartame,APM)。研究表明,由于GLA与Cu~(2+)螯合,GLA的蓝色荧光将被Cu~(2+)淬灭,同时出现了一个增强的RRS特征峰。当加入一定量的APM后,系统的荧光恢复,RRS峰强度降低。因此,GLA-Cu~(2+)-APM体系形成荧光"关-开"模式和RRS"开-关"模式的传感平台,这个传感平台展现出很高的灵敏度和良好的选择性,可用于样品溶液中痕量APM的快速检测。其线性范围分别为0.3~300.0μmol/L(FL)和0.4~800.0μmol/L(RRS),检测限(LOD)为26.0 nmol/L(FL)和39.0 nmol/L(RRS)。应用此传感平台的FL法测定水样中的APM取得了令人满意的结果。
        A novel sensing platform with optical activity and water solubility was constructed through the direct combination of Cu~(2+)with the Maillard reaction product of glucose and L-Arginine(GLA). The GLA-Cu~(2+)complex was selected as sensing platform of fluorescence(FL) and resonance Rayleigh scattering(RRS) for detection of aspartame(APM). This paper demonstrates that the blue fluorescence of GLA is quenched by Cu~(2+)owing to the chelating ability of GLA toward Cu~(2+), but a new enhanced RRS characteristic peak appears because of the presence of Cu ion. However, the fluorescence of the system recovered and RRS intensity of the new peak decreased after the following addition of certain amount of APM. Thus, GLA-Cu~(2+)-APM system can act as sensing platform with switches of fluorescence turn-off-on and RRS turn-on-off for the determination of APM in sample solutions.Thissensingplatformexhibitsexcellentselectivityandsensitivityinawidelinearrangeof 0.3~300μmol/L(FL)and 0.4~800 μmol/L(RRS), and limit of detection(LOD) of 26 nmol/L(FL) and 39 nmol/L(RRS), respectively,for APM tracer concentration. The applications of this sensing platform with FL method to determination of APM in water samples have demonstrated very satisfactory results.
引文
[1] SHAHABADI N, KHODAEI M M, KASHANIAN S, et al.Study on the interaction of a copper(Ⅱ)complex containing the artificial sweetener aspartame with human serum albumin[J].Molecular Biology Reports,2014,41(5),3271-3278.
    [2] KISS A, RAPI S, FORGO P. Comparative liquid chromato-graphic studies for the determination of bioactive peptides[J].Analytical Letters,2013,46(16):2514-2525.
    [3] CHENG C,WU S. Simultaneous analysis of aspartame and its hydrolysis products of Coca-Cola Zero by on-line postcolumn derivation fluorescence detection and ultraviolet detection coupled two-dimensional high-performance liquid chromatography[J]. Journal of Chromatography A, 2011,1218(20):2976-2983.
    [4] KASHANIAN S, KHODAEI M M, KHEIRDOOSH F. In vitro DNA binding studies of Aspartame, an artificial sweetener[J].Journal of Photochemistry and Photobiology B:Biology,2013,120:104-110.
    [5] LIN H, OTURAN N, WU J, et al. Removal of artificial sweetener aspartame from aqueous media by electrochemical advanced oxidation processes[J]. Chemosphere, 2016,167:220-227.
    [6] PANDURANGAN M, ENKHTAIVAN G, KIM D H. Cytotoxic effects of aspartame on human cervical carcinoma cells[J].Toxicology Research,2016,5(1):45-52.
    [7] SILVERO M J, BECERRA M C. Plasmon-induced oxidative stress and macromolecular damage in pathogenic baeteria[J].RSC Advances,2016,6(102):100203-100208.
    [8] GULLON B, MONTENEGRO M I, RUIZ-MATUTE A I, et al. Synthesis, optimization and structural characterization of a chitosan-glucose derivative obtained by the Maillard reaction[J].Carbohydrate Polymers,2016,137:382-389.
    [9] HELOU C, JACOLOT P, NIQUET-LERIDON C, et al.Maillard reaction products in bread:A novel semi-quantitative method for evaluating melanoidins in bread[J]. Food Chemistry,2016,190:904-911.
    [10] DONG J X, SONG X F, SHI Y, et al. A potential fluorescent probe:Maillard reaction product from glutathione and ascorbic acid for rapid and label-free dual detectionof Hg2+and biothiols[J]. Biosensors and Bioelectronics,2016,81:473-479.
    [11] XU H, ZHANG X, KARANGWA E. Inhibition effects of Maillard reaction products derived from L-cysteine and glucose on enzymatic browning catalyzed by mushroom tyrosinase and characterization of active compounds by partial least squares regression analysis[J]. RSC Advances,2016,6(70):65825-65836.
    [12] SENTHAMIZHAN A, BALUSAMY B, AYTAC Z, et al.Ultrasensitive electrospun fluorescent nanofibrous membrane for rapid visual colorimetric detection of H2O2[J].Analytical and Bioanalytical Chemistry, 2016,408(5):1347-1355.
    [13] TANG X, HAN J, WANG Y, et al. A multifunctional Schiff base as a fluorescence sensor for Fe3+and Zn2+ions, and a colorimetric sensor for Cu2+and applications[J].Spectrochimica Acta Part A:Molecular and Biomolecular Spectroscopy,2017,173:721-726.
    [14] XU J, PAN J, ZHANG Y, et al. Ultrasensitive near-infrared fluorescence-enhanced probe for discriminative detection of GSH and Cys from different emission channels[J].Sensors and Actuators B:Chemical,2017,238:58-65.
    [15] ZHU D, LUO Y, SHUAI L, et al. A hemicyanine-based selective and sensitive colorimetric and fluorescent turnon probe for Cu2+[J].Tetrahedron Letters, 2016,57(48):5326-5329.
    [16] LI J B, YANG X L, YANG J X, et al. Resonance Rayleigh scattering and resonance nonlinear scattering methods for the determination of nicardipine hydrochloride using eosin Y as a probe[J]. RSC Advance, 2016, 6(31):25887-25893.
    [17] YUAN Y S, FU S H, XU Q Y, et al. The fluorescence and resonance Rayleigh scattering spectral study and analytical application of cerium(IV)and cefoperazone system[J]. Spectrochimica Acta Part A:Molecular and Biomolecular Spectroscopy,2016,162:93-97.
    [18] PENG H J,ZHOU M Q,PENG J D. A highly sensitive resonance rayleigh scattering method for the determination of Vitamin C based on the formation of Zirconium Hexacyanoferrate(II)nanoparticles[J]. Food Analytical Methods,2015,9(4):942-949.
    [19]胡月芳,张亮亮,林丽云,等.基于枸杞为原料的碳量子点制备及作为荧光探针高灵敏检测D-青霉胺[J].中国科学:化学,2017,47(2):258-266.
    [20] TAN X P, LI Q, ZHANG X N, et al. A novel and sensitive turn-on fluorescent biosensor for the determination of thioctic acid based on Cu2+-modulated N-acetyl-Lcysteine capped CdTe quantum dots[J]. RSC Advance,2015,5(55):44173-44182.
    [21] YANG J D, TAN X P, ZHANG X N, et al. Cu2+functionalized N-acetyl-L-cysteine capped CdTe quantum dots as a novel resonance Rayleigh scattering probe for the recognition of phenylalanine enantiomers[J]. Spectrochimica Acta Part A:Molecular and Biomolecular Spectroscopy,2015,151:591-597.
    [22] YANG J D, WANG E N, ZHOU SHANG, et al. Effects of(R)-and(S)-propranolol hydrochloride enantiomers on the resonance Rayleigh scattering spectra with erythrosine B as probe and their analytical applications[J].Talanta,2015,134:754-760.