阿尔金断裂带中段现今构造形变模式的InSAR研究
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Study on the Contemporary Tectonic Deformation Pattern of the Middle Altyn Tagh Fault Zone as Revealed by InSAR Measurements
  • 作者:邱江涛 ; 朱良玉 ; 王随随
  • 英文作者:QIU Jiangtao;ZHU Liangyu;WANG Suisui;Institute of Seismology,CEA;The Second Monitoring and Application Center,CEA;
  • 关键词:InSAR ; 阿尔金断裂 ; 滑动速率 ; 大地测量反演 ; 构造形变
  • 英文关键词:InSAR;;Altyn Tagh fault;;slip rate;;geodetic inversion;;crustal deformation
  • 中文刊名:DKXB
  • 英文刊名:Journal of Geodesy and Geodynamics
  • 机构:中国地震局地震研究所;中国地震局第二监测中心;
  • 出版日期:2018-08-15
  • 出版单位:大地测量与地球动力学
  • 年:2018
  • 期:v.38
  • 基金:国家自然科学基金(41604015);; 中国地震局地震科技星火计划(XH17059)~~
  • 语种:中文;
  • 页:DKXB201808003
  • 页数:5
  • CN:08
  • ISSN:42-1655/P
  • 分类号:17-20+51
摘要
利用2007~2010年间14景ALOS PALSAR数据及SBAS InSAR技术,获取阿尔金断裂带中段91°E附近现今地壳形变速率场,并反演该地区断层的滑动速率和闭锁深度。结果表明,阿尔金断裂中段地区的形变速率自北向南呈3个线性梯度变化区,分别为阿尔金山东段8~12mm/a、索尔库里盆地6~7mm/a、阿尔金断裂带以南约0mm/a。3个速率梯度变化区主要集中在喀腊达坂断裂和阿尔金主断裂上;拟合的断层就位于金雁山南缘、喀腊达坂断裂南邻,走滑速率从西(7.1mm/a)向东(14.0mm/a)逐渐增大,闭锁深度自西(4.5km)向东(10.6km)逐渐趋深。结合前人研究推测,金雁山(阿尔金山链东部)与索尔库里拉分盆地组成的复合破裂构造模式,是转换断层运动时应力和应变调整的主要驱动机制。
        The present-day crustal deformation rates near 91°E in the middle section of the Altyn Tagh fault zone are obtained using SBAS InSAR based on 14 ALOS PALSAR scene imagery from 2007 to 2010,and the slip velocities and the locked depth in different segments are calculated as well.The results show that the deformation pattern from north to south is characterized by linear decrease with three different rate gradients.The rates are 8~12 mm/a in the eastern part of the Altyn mountains,6~7 mm/a in the Xorkol basin,and 0 mm/a in the south of the Altyn Tagh fault,respectively.The significant rate changes of the three sections are concentrated on the two fractured zones of the Kaladaban fault and the Altyn Tagh fault.The best fitted fault is located at the southern margin of Jinyan mountains.The strike-slip rates increase from 7.1 mm/a in the west to 14.0 mm/a in the east.The locking depth is increased from 4.5 km in the west to 10.6 km in the east.Referring to previous research results,it is inferred that the Jinyan mountain and the Xorkol basin form a composite fault structure,which is the main adjustment model of strain and stress during the transition fault movements.
引文
[1]黄汉纯,王长利.阿尔金构造带及其对塔里木和柴达木盆地的影响[J].地球学报,1987(3):17-32(Huang Hanchun,Wang Changli.Altun Structural Belt and Its Influence on Tarim and Qaidam Basins[J].Acta Geoscientica Sinica,1987(3):17-32)
    [2]郭召杰,张志诚,王建君.索尔库里盆地的形成、演化及其与阿尔金断裂带的关系研究[J].高校地质学报,1998(1):59-63(Guo Zhaojie,Zhang Zhicheng,Wang Jianjun.Formation and Evolution of the Xorkol Basin and Its Relation To the Altun Tagh Fault[J].Geological Journal of China Universities,1998(1):59-63)
    [3]Peltzer G,Armijo R.Magnitude of Late Quaternary LeftLateral Displacements along the North Edge of Tibet[J].Science,1989,246(4935):1 285-1 289
    [4]Mériaux A S,Ryerson F J,Tapponnier P,et al.Rapid Slip along the Central Altyn Tagh Fault:Morphochronologic Evidence from Cherchen He and Sulamu Tagh[J].Journal of Geophysical Research Atmospheres,2004,109(B6):611-616
    [5]Zhang P Z,Molnar P,Xu X.Late Quaternary and Present-Day Rates of Slip along the Altyn Tagh Fault,Northern Margin of the Tibetan Plateau[J].Tectonics,2007,26(5):1-8
    [6]任收麦,葛肖虹,刘永江.阿尔金断裂带研究进展[J].地球科学进展,2003,18(3):386-391(Ren Shoumai,Ge Xiaohong,Liu Yongjiang.Progress in Altyn Fault Belts Research[J].Advance in Earth Sciences,2003,18(3):386-391)
    [7]熊熊,王继业,滕吉文.阿尔金断裂不同时间尺度下的滑移速率及构造意义[J].地质科技情报,2006,25(3):21-28(Xiong Xiong,Wang Jiye,Teng Jiwen.Slip-Rate of the Altyn Tagh Fault under Various Time-Scales and Its Tectonic Implications[J].Geological Science&Technology Information,2006,25(3):21-28)
    [8]Berardino P,Fornaro G,Lanari R,et al.A New Algorithm for Surface Deformation Monitoring Based on Small Baseline Differential SAR Interferograms[J].IEEE Transactions on Geoscience&Remote Sensing,2003,40(11):2 375-2 383
    [9]王昊,董杰,邓书斌.基于SARscape的干涉叠加在地表形变监测中的应用[J].遥感信息,2011(6):109-113(Wang Hao,Dong Jie,Deng Shubin.Application of Interferogram Stackingin Surface Deformation Based on SARscape[J].Remote Sensing Information,2011,39(6):109-113)
    [10]沈强,乔学军,金银龙,等.ALOS PALSAR雷达影像InSAR数据处理中的基线和地形误差分析[J].大地测量与地球动力学,2012,32(2):1-6(Shen Qiang,Qiao Xuejun,Jin Yinlong.Error Analysis of Baseline and Terrain in InSAR Data Processing Using ALOS PALSAR[J].Journal of Geodesy and Geodynamics,2012,32(2):1-6)
    [11]Mériaux A S,Woerd J V D,Tapponnier P,et al.The Pingding Segment of the Altyn Tagh Fault(91°E):Holocene Slip-Rate Determination from Cosmogenic Radionuclide Dating of Offset Fluvial Terraces[J].Journal of Geophysical Research Solid Earth,2012,117(B9):469-478
    [12]Savage J C,Burford R O.Geodetic Determination of Relative Plate Motion in Central California[J].Journal of Geophysical Research Atmospheres,1973,78(5):832-845
    [13]Taylor M,Peltzer G.Current Slip Rates on Conjugate Strike‐Slip Faults in Central Tibet Using Synthetic Aperture Radar Interferometry[J].Journal of Geophysical Research Atmospheres,2006,111(B12):107-108
    [14]李海兵,杨经绥,许志琴,等.阿尔金断裂带对青藏高原北部生长、隆升的制约[J].地学前缘,2006,13(4):59-79(Li Haibing,Yang Jingsui,Xu Zhiqin,et al.The Constraint of the Altyn Tagh Fault System to the Growth and Rise of the Northern Tibetan Plateau[J].Earth Science Frontiers,2006,13(4):59-79)
    [15]许志琴,杨经绥.阿尔金断裂两侧构造单元的对比及岩石圈剪切机制[J].地质学报,1999(3):193-205(Xu Zhiqin,Yang Jingsui.A Comparison between the Tectonic Units on the Two Sides of the Altun Sinistral Strike-Slip Fault and the Mechanism of Lithospheric Shearing[J].Acta Geologica Sinica,1999(3):193-205)