基于磁性分子印迹修饰电极的氯霉素电化学发光分析法
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Electrochemiluminescence Analysis of Chloramphenicol Based on Magnetic Molecularly Imprinted Modified Electrode
  • 作者:张若鹏 ; 康天放 ; 鲁理平 ; 程水源
  • 英文作者:ZHANG Ruo-peng;KANG Tian-fang;LU Li-ping;CHENG Shui-yuan;College of Environmental and Energy Engineering,Key Laboratory of Beijing on Regional Air Pollution Control,Beijing University of Technology;
  • 关键词:电化学发光(ECL) ; 氯霉素(CAP) ; 分子印迹 ; 联吡啶钌
  • 英文关键词:electrochemiluminescense(ECL);;chloramphenicol(CAP);;molecular imprinting;;bipyridine ruthenium
  • 中文刊名:TEST
  • 英文刊名:Journal of Instrumental Analysis
  • 机构:北京工业大学区域大气复合污染防治北京市重点实验室环境与能源工程学院;
  • 出版日期:2019-02-25
  • 出版单位:分析测试学报
  • 年:2019
  • 期:v.38
  • 基金:北京市教委科技计划重点项目(KZ201110005006);; 教育部博士点基金博导类项目(20131103110011)
  • 语种:中文;
  • 页:TEST201902008
  • 页数:7
  • CN:02
  • ISSN:44-1318/TH
  • 分类号:53-59
摘要
基于氯霉素(CAP)强烈抑制Ru(bpy)23+/三丙胺体系的电化学发光(ECL)信号,构建了一种高灵敏检测水体中CAP的磁性分子印迹电化学发光传感器。以Fe3O4-Au磁性纳米粒子为载体,对氨基苯硫酚(4-ATP)和2-丙烯酰胺-2-甲基丙基磺酸(AMPs)作为双功能单体,二甲基丙烯酸乙二酯(EGDMA)作为交联剂,过硫酸铵(APS)作为引发剂,通过自组装在Fe3O4-Au磁性纳米粒子表面合成氯霉素分子印迹膜(MIPs)。以修饰该磁性分子印迹聚合物的磁性玻碳电极(MGCE)为CAP电化学发光传感器。在优化实验条件下,ECL信号变化值(ΔI=I0-Ip)随着CAP浓度的增大而增大,且ΔI与CAP浓度的对数在0. 010~100 ng/L CAP浓度范围内呈良好线性关系,相关系数(r)为0. 998 0,检出限为0. 010 ng/L。研究结果表明,该传感器对CAP的检测灵敏度高,选择性好,线性范围宽,具有良好的应用前景。
        A high sensitive electrochemiluminescence( ECL) sensor was established for the determination of chloramphenicol( CAP) in water based on magnetic molecularly imprinted technique and strong inhibitation of CAP on ECL signal of Ru( bpy)23 +/tripropyl amine system. Chloramphenicol molecularly imprinted membranes( MIPs) were synthesized on the surface of Fe3 O4-Au magnetic nanoparticles by self-assembly,using Fe3 O4-Au magnetic nanoparticles as carriers,4-aminothiophenol( 4-ATP) and 2-acrylamido-2-methylpropane sulfonic acid( AMPs) as binary functional monomers,ethylene dimethacrylate( EGDMA) as a cross-linking agent and ammonium persulphate( APS)as an initiator. The magnetic glassy carbon electrode( MGCE) modified with the magnetic molecularly imprinted polymer was used as an ECL sensor for CAP. Under the optimal conditions,there was a good linear relationship for CAP with ECL quenching values of the system in the concentration range of0. 010-100 ng/L,with a correlation coefficient( r) of 0. 998 0 and a detection limit of 0. 010 ng/L.Results showed that the sensor has a good application prospect in the determination of CAP with advantages of high sensitivity,good selectivity and wide linear range.
引文
[1] Chen H X,Ying J,Chen H,Huang J L,Liao L. Chromatographia,2008,68:629-634.
    [2] Commission Decision 2003/181/EC of 13 March 2003 Amending Decision 2002/657/EC as Regard the Setting of MinimumRequired Performance Limits(MRPLs)for Certain Residue in Food of Animal Origin. Off. J. Eur. Commun.,2003,17:71.
    [3] Yang F,Chen G N. Fujian Anal. Test.(杨方,陈国南.福建分析测试),2005,14(1):2112-2113.
    [4] Zhang X Y,Ma L. J. Hydroecol.(张秀妍,马琳.水生态学杂志),2015,36(6):14-17.
    [5] Yan W J,Yang L P,Zhuang H,Wu H Z,Zhang J H. Biosens. Bioelectron.,2016,78:67-72.
    [6] Zhu P J,Liu Y Q,Yao S,Ma G J,Wang H W. J. Instrum. Anal.(朱培杰,刘艳清,姚夙,马国坚,汪洪武.分析测试学报),2018,37(7):804-809.
    [7] Li J W,Wei S L,Yao S,Liu Y. J. Instrum. Anal.(利健文,韦寿莲,姚夙,刘永.分析测试学报),2018,37(2):190-197.
    [8] Xie C G,Liu B H,Wang Z Y,Gao D M,Guan G J,Zhang Z P. Anal. Chem.,2008,80(2):437-443.
    [9] Gao D M,Zhang Z P,Wu M H,Xie C G,Guan G J,Wang D P. J. Am. Chem. Soc.,2007,129(25):7859-7866.
    [10] Shang Z Y,Liu Y L,Liu Y,Song Q J. J. Instrum. Anal.(商哲一,刘艳丽,刘瑛,宋启军.分析测试学报),2013,32(11):1401-1408.
    [11] Hu F X,Chen S H,Yuan R. Sens. Actuators B,2013,176:713-722.
    [12] Zhang J G,Kang T F,Xue R,Sun X. J. Anal. Chem.,2013,41(9):1353-1358.
    [13] Zhang J J,Kang T F,Lu L P,Cheng S Y. J. Anal. Chem.,2016,44(5):760-766.
    [14] Zhao W R,Kang T F,Lu L P,Shen F X,Cheng S Y. J. Electroanal. Chem.,2017,786:102-111.
    [15] Yang Y Z,Zhang Y,Li S,Liu X G,Xu B S. Appl. Surf. Sci.,2012,258(17):6441-6450.
    [16] Li Q Y,Zhong Q Z,Zhang C,Zhang B Y. Polym. Mater. Sci. Eng.(黎前跃,钟启智,张翀,张宝砚.高分子材料科学与工程),2007,23(5):41-44.
    [17] Noffsinger J B,Danielson N D. Anal. Chem.,1987,59(6):865-868.
    [18] Leland J K,Powell M J. Electrochem. Soc.,1990,137:3127-3131.
    [19] Miao M J,Choi J P,Bard A J. J. Am. Chem. Soc.,2002,124:14478-14485.
    [20] Hao T T,Xie W T,Li Q F,Guo Z Y. Chin. J. Anal. Lab.(郝婷婷,谢文婷,李琴芬,郭智勇.分析试验室),2012,31(2):105-108.
    [21] Zu Y B,Bard A J. Anal. Chem.,2002,72:3223-3232.
    [22] Yin X B,Sha B B,Zhang X H,He X W,Xie H. Electroanalysis,2008,20(10):1085-1091.
    [23] Yang G M,Zhao F Q. Biosens. Bioelectron.,2015,64:416-422.
    [24] Yadav S K,Agrawal B,Chandra P,Goyal R N. Biosens. Bioelectron.,2014,55:337-342.