改性纳米金富集-毛细管电泳电化学发光法测定水产品中4种氟喹诺酮类药物残留
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Determination of Four Fluoroquinolones Drug Residues in Aquatic Products by Capillary Electrophoresis-Electrochemiluminescence with Modified Gold Nanoparticles Enrichment
  • 作者:陈宗保 ; 王星 ; 尹月春 ; 陈国南
  • 英文作者:CHEN Zong-bao;WANG Xing;YIN Yue-chun;CHEN Guo-nan;Key Laboratory of Applied Organic Chemistry,Higher Institutions of Jiangxi Province,School of Chemistry and Environmental Science,Shangrao Normal University;Ministry of Education Key Laboratory of Analysis and Detection for Food Safety,Department of Chemistry,Fuzhou University;
  • 关键词:改性纳米金粒子 ; 富集 ; 氟喹诺酮药物 ; 毛细管电泳-电化学发光(CE-ECL)
  • 英文关键词:modified gold nanoparticles;;enrichment;;fluoroquinolones drug;;capillary electrophoresis-electrochemical luminescence(CE-ECL)
  • 中文刊名:TEST
  • 英文刊名:Journal of Instrumental Analysis
  • 机构:上饶师范学院化学与环境科学学院江西省高等学校应用有机化学重点实验室;福州大学化学学院食品安全分析与检测教育部重点实验室;
  • 出版日期:2019-02-25
  • 出版单位:分析测试学报
  • 年:2019
  • 期:v.38
  • 基金:国家自然科学基金项目(21465020,21765018);; 江西省重点研发计划项目(20161BBF60042)
  • 语种:中文;
  • 页:TEST201902009
  • 页数:6
  • CN:02
  • ISSN:44-1318/TH
  • 分类号:60-65
摘要
建立了一种利用改性纳米金粒子富集与毛细管电泳-电化学发光(CE-ECL)法测定水产品中4种氟喹诺酮(环丙沙星、恩诺沙星、氧氟沙星、诺氟沙星)类药物残留的分析方法。实验考察了富集条件与CE分离条件,并基于增强Ru(bpy)23+电化学发光的原理,优化了ECL检测条件。结果表明,在最优条件下,经改性金纳米粒子富集后的4种分析物在0. 05~10. 0μmol/L浓度范围内,其峰高与浓度呈现良好的线性关系,检出限(S/N=3)可达0. 2μmol/L,4种目标物的富集倍数达104~127倍。该方法用于鳗鱼样品的分析,回收率为94. 5%~112%,相对标准偏差(RSD)均不大于6. 3%。
        A method was established for the determination of 4 fluoroquinolones,i. e. ciprofloxacin( CIP),enrofloxacin( EN),ofloxacin( OF) and norfloxacin( NOR) in aquatic products by capillary electrophoresis-electrochemical luminescence( CE-ECL) with modified gold nanoparticle enrichment. The conditions for enrichment and CE separation were studied,and the conditions for ECL detection were also investigated based on the principle of enhanced Ru( bpy)23 +electrochemiluminescence. Under the optimal conditions,there were good linearities for the 4 analytes enriched with modified gold nanoparticles in the concentration range of 0. 05-10. 0 μmol/L. The detection limits( S/N = 3) were low to 0. 02 μmol/L and the enrichment times were 104-127. This method was used in the analysis of 4 analytes in actual eels samples with recoveries of 94. 5%-112% and relative standard deviations( RSDs) not more than 6. 3%.
引文
[1] The Commission of Pharmacopoeia of the People’s Republic of China. National Standard for Veterinary Drugs(ChemicalDrugs,Chinese Veterinary Medicine). 1st vol. Beijing:Chemical Industry Press(中国兽药典委员会.兽药国家标准(化学药品、中药卷)第1册.北京:化学工业出版社),2013.
    [2] Deng B,Xu Q,Lu H,Ye L,Wang Y. Food Chem.,2012,134(4):2350-2354.
    [3] Sheryl A,Gelinas J M,Dufresne G,Haria M,Querry J,Cleroux C,Menard C,Delahaut P,Singh G,Fischer-Du-rand N,Godefroy S B. Food Anal. Method,2008,1:28-35.
    [4] Gigosos P G,Revesado P R,Cadahia O,Fente C A,Vazquez B I,Franco C M,Cepeda A. J. Chromatogr. A,2000,871(1/2):31-36.
    [5] Wang C Z,Liu R,Zhang J H,Shen X G,Du X X,Kuang X,Feng K Y. J. Instrum. Anal.(王成真,刘戎,张嘉慧,沈祥广,杜小溪,匡徐,冯可莹.分析测试学报),2018,37(5):615-620.
    [6] Wang X M,Zhou W,Wang C L,Chen Z L. Talanta,2018,186(15):545-553.
    [7] Zhang Y H,Jin Y. J. Instrum. Anal.(张艳海,金燕.分析测试学报),2014,33(10):1148-1153.
    [8] Li F G,Su M,Li X Y,Zhang H X,Yao W Q,Dou H,Zhang W Q. Chin. J. Chromatogr.(李锋格,苏敏,李晓岩,张红霞,姚伟琴,窦辉,张万权.色谱),2011,29(2):120-125.
    [9] Lolo M,Pedreira S,Fente C,Vázquez B I,Franco C M,Cepeda A. J. Agric. Food Chem.,2006,53(8):2849-2852.
    [10] Francis P S,Adcock J L. Anal. Chim. Acta,2006,541:3-12.
    [11] Guo L,Fu F,Chen G. Anal. Bioanal. Chem.,2011,399(10):3323-3343.
    [12] Guo L,Qiu B,Xue L,Chen G. Electrophoresis,2009,30(13):2390-2396.
    [13] Xiao Z,Da X,Denbin Z,Yabing T,Li J. Talanta,2008,75(5):1300-1306.
    [14] Liu Y M,Shi Y M,Liu Z L. Biomed. Chromatogr.,2010,24(9):941-947.
    [15] Frens G. Nat. Phys. Sci.,1973,241:20-22.