不同水盐条件下胶州芦苇盐沼土壤水稳性团聚体的室内模拟实验研究
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Indoor Simulated Experiment on Soil Water-stable Aggregates in Phragmites australis Saltmarsh in Jiaozhou under Different Soil Moistures and Salinities
  • 作者:朱梅珂 ; 孔范龙 ; 李悦 ; 仙旋旋 ; 郗敏
  • 英文作者:ZHU Meike;KONG Fanlong;LI Yue;XIAN Xuanxuan;XI Min;College of Environmental Science and Engineering, Qingdao University;
  • 关键词:水稳性团聚体 ; 芦苇盐沼 ; 土壤含盐量 ; 土壤含水率
  • 英文关键词:water-stable aggregates;;Phragmites australis saltmarsh;;soil salinity;;soil moisture
  • 中文刊名:KXSD
  • 英文刊名:Wetland Science
  • 机构:青岛大学环境科学与工程学院;
  • 出版日期:2019-04-15
  • 出版单位:湿地科学
  • 年:2019
  • 期:v.17
  • 基金:国家自然科学基金项目(41771098)资助
  • 语种:中文;
  • 页:KXSD201902015
  • 页数:9
  • CN:02
  • ISSN:22-1349/P
  • 分类号:108-116
摘要
为了探究土壤水分和盐分对山东省胶州市东端芦苇(Phragmites australis)盐沼土壤水稳性团聚体的影响,通过室内模拟实验,选取粒径大于0.25 mm团聚体含量、团聚体平均质量直径、几何平均直径和分形维数4种指标,研究不同水、盐条件下土壤团聚体的水稳性特征。研究结果表明,在16种水、盐条件下,土壤中粒径小于0.25 mm团聚体含量最大,为33.90%~66.61%;随着培养时间的延长,粒径大于0.25 mm团聚体含量总体增加;随着土壤含水率增大,粒径大于0.25 mm团聚体含量、平均质量直径和几何平均直径都呈单峰型变化,当土壤含水率为30%时最大;随着土壤含盐量增大,粒径大于0.25 mm团聚体含量、平均质量直径和几何平均直径都在减小;分形维数与粒径大于0.25 mm团聚体含量的变化规律相反,两者显著负相关。土壤不同水、盐含量对芦苇盐沼土壤中的水稳性团聚体稳定性影响显著,相对于高水、高盐(土壤含水率为60%、土壤含盐量为2.4%)条件,土壤含水率为30%、土壤含盐量为0.9%更有利于土壤水稳性团聚体的形成和土壤结构的稳定。
        In order to investigate the effects of moisture and salinity on soil water-stable aggregates in Phragmites australis saltmarsh of east end of Jiaozhou, the characteristics of soil water-stable aggregates under different soil moistures and salinities were analyzed quantitatively by a laboratory experiment. The stability of soil water-stable aggregates was evaluated by four indicators including the content of water-stable aggregates greater than 0.25 mm, mean weight diameter, geometric mean diameter, and fractal dimension. The results showed that the content of aggregates less than 0.25 mm was the highest, which ranged from 33.90%to 66.61% under 16 kinds of moistures and salinities. The content of water-stable aggregates greater than 0.25 mm showed an increasing trend with the increase of culture time. With the increase of soil moisture, the content of water-stable aggregates greater than 0.25 mm, mean weight diameter and geometric mean diameter changed with single-peak type, which reached the maximum when soil moisture was 30%. With the increase of soil salinity, the content of water-stable aggregates greater than 0.25 mm, mean weight diameter, geometric mean diameter were decreased. Fractal dimension had a significant negative correlation with the content of water-stable aggregates greater than 0.25 mm. Moisture and salinity had significant effects on the stability of soil water-stable aggregates in coastal wetlands. Compared with high moisture(60%) and high salinity(2.4%), when soil moisture was 30% and soil salinity was 0.9%, they were more favorable to the formation of water-stable aggregates and the stability of soil structure.
引文
[1]Six J, Bossuyt H, Degryze S, et al. A history of research on the link between(micro)aggregates, soil biota, and soil organic matter dynamics[J]. Soil&Tillage Research, 2004, 7799:7-31.
    [2]史奕,陈欣,沈善敏.有机胶结形成土壤团聚体的机理及理论模型[J].应用生态学报, 2002, 1133(11):1495-1498.
    [3]操庆.盐分对土壤电化学、结构和生物学相关性质的影响[D].合肥:安徽农业大学, 2015.
    [4]邱莉萍,张兴昌,张晋爱.黄土高原长期培肥土壤团聚体中养分和酶的分布[J].生态学报, 2006, 2266(2):364-372.
    [5]白军红,王庆改,丁秋祎,等.不同芦苇沼泽湿地土壤全氮季节动态变化和氮储量研究[J].草业学报, 2008, 1177(2):162-165.
    [6]王丽,李军,李娟,等.轮耕与施肥对渭北旱作玉米田土壤团聚体和有机碳含量的影响[J].应用生态学报, 2014, 255(3):759-768.
    [7]卢凌霄,宋同清,彭晚霞,等.喀斯特峰丛洼地原生林土壤团聚体有机碳的剖面分布[J].应用生态学报, 2012, 2233(5):1167-1174.
    [8]Jharna R S, Bhupinder P S, Annette L C, et al. Agricultural management practices impacted carbon and nutrient concentrations in soil aggregates, with minimal influence on aggregate stability and total carbon and nutrient stocks in contrasting soils[J]. Soil&Tillage Research, 2018, 117788:209-223.
    [9]白秀梅,韩有志,郭汉清.庞泉沟自然保护区典型森林土壤大团聚体特征[J].生态学报, 2014, 3344(7):1654-1662.
    [10]范春梅,廖超英,孙长忠,等.黄土高原丘陵沟壑区放牧林草地团聚体水稳性的研究[J].中国农业通报, 2005, 2211(11):399-402.
    [11]Safoora N, Farshid N. Distribution pattern of amidohydrolase activities among soil aggregates:Effect of soil aggregates isolation methods[J]. Applied Soil Ecology, 2018, 112255:250-256.
    [12]卢金伟,李占斌.土壤团聚体研究进展[J].水土保持研究,2002, 99(1):81-85.
    [13]王秀颖,高晓飞,刘和平,等.土壤水稳性大团聚体测定方法综述[J].中国水土保持科学, 2011, 99(3):106-113.
    [14]谭秋锦,宋同清,彭晚霞,等.峡谷型喀斯特不同生态系统土壤团聚体稳定性及有机碳特征[J].应用生态学报, 2014, 2255(3):671-678.
    [15]石宗琳,王加旭,梁化学,等.渭北不同园龄苹果园土壤团聚体状况及演变趋势研究[J].土壤学报, 2017, 544(2):387-399.
    [16]Ye L P, Tan W F, Fang L C, et al. Spatial analysis of soil aggregate stability in a small catchment of the Loess Plateau, China:I.Spatial variability[J]. Soil&Tillage Research, 2018, 179:71-81.
    [17]Qian J, Liu J J, Wang P F, et al. Effects of riparian land use changes on soil aggregates and organic carbon[J]. Ecological Engineering, 2018, 11122:82-88.
    [18]Nouwakpo S K, Song J, Gonzalez J M, et al. Soil structural assessment with the fluidized bed, aggregate stability, and rainfall simulation on long-term tillage and crop rotation systems[J].Soil&Tillage Research, 2018, 117788:65-71.
    [19]王恩姮,赵雨森,陈祥伟.前期含水量对机械压实后黑土团聚体特征的影响[J].土壤学报, 2009, 4466(2):241-247.
    [20]马仁明,蔡崇法,李朝霞,等.前期土壤含水率对红壤团聚体稳定性及溅蚀的影响[J].农业工程学报, 2014, 3300(3):95-103.
    [21]杨永红,刘淑珍,王成华.土壤含水量减少对提高浅表层滑坡稳定性的影响[J].土壤保持研究, 2007, 1144(5):290-292.
    [22]Wang Y X, Ran L S, Fang N F, et al. Aggregate stability and associated organic carbon and nitrogen as affected by soil erosion and vegetation rehabilitation on the Loess Plateau[J]. CATENA,2018, 16677:257-265.
    [23]Udom B E, Omovbude S. Soil physical properties and carbon/nitrogen relationships in stable aggregates under legume and grass fallow[J]. Acta Ecologica Sinica, 2019, 3399(1):56-62.
    [24]肖颖,杨继松.辽河口滨海湿地土壤有机碳矿化及其与盐分的关系[J].生态学杂志, 2015, 3344(10):2792-2798.
    [25]廖小娟,何东进,王韧,等.闽东滨海湿地土壤有机碳含量分布格局[J].湿地科学, 2013, 11(2):192-197.
    [26]王洋,刘景双,孙志高,等.湿地系统氮的生物地球化学研究概述[J].湿地科学, 2006, 44(4):311-320.
    [27]Xi M, Zi Y Y, Wang Q G, et al. Assessment of the content, structure, and source of soil dissolved organic matter in the coastal wetlands of Jiaozhou Bay, China[J]. Physics and Chemistry of the Earth, 2018, 110033:35-44.
    [28]白军红,邓伟,欧阳华,等.吉林向海沼泽湿地土壤氮素的剖面分析[J].湖泊科学, 2004, 1166(4):377-380.
    [29]曾德超.机械土壤动力学[M].北京:北京科学技术出版社,1995.
    [30]袁晓敏,杨继松,刘凯,等.盐分对辽河口湿地土壤DOC及CO2生成的影响[J].生态学杂志, 2017, 3366(8):2111-2117.
    [31]Cambardella C A, Elliott E T. Carbon and nitrogen dynamics of soil organic matter fractions from cultivated grassland soils. Soil Science Society of America Journal, 1994, 5588(1):123-130.
    [32]Li Q F, Xi M, Wang Q G, et al. Characterization of soil salinization in typical estuarine area of the Jiaozhou Bay, China[J]. Physics and Chemistry of the Earth, 2018, 110033:51-61.
    [33]鲁如坤.土壤农业化学分析[M].南京:中国农业科技出版社,1999.
    [34]杨培岭,罗远培,石元春.用粒径的重量分布表征的土壤分形特征[J].科学通报, 1993, 3388(20):1896-1899.
    [35]Dexter A R. Advances in characterization of soil structure[J].Soil&Tillage Research, 1988, 111:199-238.
    [36]Nimmo J R, Perkins K S. Aggregate stability and size distribution[M]. California:Methods of Soil Analysis Part Physical Methods, 2002.
    [37]Tisdall J M, Oades J M. Organic matter and water-stable aggregates in soils[J]. Journal of Soil Science, 1982, 3333:141-163.
    [38]Zhu G Y, Deng L, Shangguan Z P. Effects of soil aggregate stability on soil N following land use changes under erodible environment[J]. Agriculture, Ecosystems&Environment, 2018, 262(15):18-28.
    [39]范云涛,雷廷武,蔡强国.湿润速度和累积降雨对土壤表面结皮发育的影响[J].土壤学报, 2009, 4466(5):764-771.
    [40]周刚,赵辉,陈国玉,等.花岗岩红壤区不同地类土壤抗蚀性分异规律研究[J].中国水土保持, 2008,(9):27-29.
    [41]Sanchez N A, Gil V J M, Delgado I M J, et al. Establishing an index and identification of limiting parameters for characterizing soil quality in Mediterranean ecosystems[J]. CATENA, 2015,113311:35-45.
    [42]李小刚,崔志军,王玲英,等.盐化和有机质对土壤结构稳定性及阿特伯格极限的影响[J].土壤学报, 2002, 3399(4):550-559.
    [43]李小刚,曹靖,李凤民.盐化及钠质化对土壤物理性质的影响[J].土壤通报, 2004, 3355(1):64-72.
    [44]徐爽.化学物质对土壤团聚体稳定性及其它物理性状的影响[D].杨凌:西北农林科技大学, 2015.
    [45]余海英,李廷轩,周建民.设施土壤次生盐渍化及其对土壤性质的影响[J].土壤, 2005, 3377(6):581-586.