大孔磁性聚合物载体的制备及其固定化硫酸盐还原菌的研究
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Preparation of macroporous magnetic polymer carrier and study on immobilized sulfate reducing bacteria
  • 作者:张婷 ; 李昀 ; 冯新慧 ; 周晓龙
  • 英文作者:ZHANG Ting;LI Yun;FENG Xinhui;ZHOU Xiaolong;School of Chemical Engineering, East china University of Science and Technology;
  • 关键词:高内相乳液模板法 ; 磁性 ; 固定化 ; 硫酸盐废水 ; 硫酸盐还原菌
  • 英文关键词:high internal phase emulsion template method;;magnetic;;immobilization;;sulfate wastewater;;sulfate reducing bacteria
  • 中文刊名:GNCL
  • 英文刊名:Journal of Functional Materials
  • 机构:华东理工大学化工学院石油加工系;
  • 出版日期:2019-03-31
  • 出版单位:功能材料
  • 年:2019
  • 期:v.50;No.426
  • 语种:中文;
  • 页:GNCL201903015
  • 页数:6
  • CN:03
  • ISSN:50-1099/TH
  • 分类号:96-101
摘要
化学共沉淀法制备了油酸修饰的Fe_3O_4颗粒,以苯乙烯为连续相,水为分散相,Fe_3O_4颗粒为稳定剂,采用高内相乳液模板法合成了磁性大孔聚合物小球(MPMS),并对MPMS的形貌、疏水性、结构、热稳定性、磁性等进行了表征。将硫酸盐还原菌(SRB)固定于MPMS,以模拟硫酸盐废水,比较了固定化SRB与游离SRB的脱硫性能。结果表明,大孔材料MPMS呈现多级孔道结构,具有丰富的泡孔和窗孔,MPMS的饱和磁化强度为2.043 A·m~2/kg,固定化SRB后的MPMS饱和磁化强度为0.188 A·m~2/kg,聚合物载体在负载后仍保留一定磁性;SRB在MPMS上固定化一周左右,可生成稳定的生物膜,对比固定化SRB和游离SRB的脱硫性能,可得出:固定化SRB生长状态优于游离SRB,当硫酸根浓度为2 000 mg/L时,脱硫速率达到2 597.76 mg/(L·d)。
        The oleic acid modified nano-Fe_3O_4 particles were prepared by chemical co-precipitation method. Using styrene as the continuous phase, water as the dispersed phase and Fe_3O_4 as the stabilizer, the magnetic macroporous polymer beads(MPMS) were synthesized by high internal phase emulsion template method, and the morphology, hydrophobicity, structure, thermal stability and magnetic properties of MPMS were characterized. Using the simulate sulfate wastewater, the desulfurization performance of immobilized SRB and free SRB was compared with each other. The results show that the macroporous material MPMS exhibited multi-level pore structure with abundant cells and pores. The saturation magnetization of MPMS was 2.043 A·m~2/kg, and the saturation magnetization of MPMS after immobilized SRB was 0.188 A·m~2/Kg. The polymer carrier retained a certain magnetic property after loading. SRB was immobilized on MPMS for about one week, and a stable biofilm could be formed. Comparing the desulfurization performance of immobilized SRB and free SRB, it can be concluded that the growth state of immobilized SRB was better than that of free SRB. When the sulfate concentration was 2000 mg/L and the desulfurization rate reached 2597.76 mg/(L·d).
引文
[1] Zhu Zhenxing, Wu Shaolin, Zhang Ting. Research progress and status of sulfate reducing bacteria (SRB) treatment of wastewater [J]. Jiangxi Chemical Industry,2008(1):18-21(in Chinese).朱振兴,吴少林,张婷.硫酸盐还原菌(SRB) 处理废水的研究进展与现状[J].江西化工,2008(1):18-21.
    [2] Yang Jiupo, Chen Meimei, Zhang Haitao, et al. Research progress of immobilized microorganism technology for the treatment of petroleum and petrochemical wastewater [J]. Environmental engineering,2013,31(5):25-29(in Chinese).杨玖坡,陈梅梅,张海涛,等.固定化微生物技术处理石油石化废水研究进展[J].环境工程,2013,31(5):25-29.
    [3] Silva A J, Hirasawa J S, Varesche M B. Evaluation of support materials for the immobilization of sulfate-reducing bacteria and methanogenic archaea [J]. Anaerobe, 2006,12(2):93-98.
    [4] Mcmahon M J, Daugulis A J. Enhancement of biogenic sulfide production in a packed-bed bioreactor via critical inoculum design and carrier material selection[J]. Biotech & Bioeng, 2008,100:855-863.
    [5] Hadjiev D, Dimitrov D, Martinov M, et al. Enhancement of the biofilm formation on polymeric supports by surface conditioning[J]. Enzyme & Microbial Technology, 2007, 40(4):840-848.
    [6] Sohn E H. Inhibition of bacterial adhesion on well-ordered comb-like polymer surfaces[J]. Colloid Surf B, 2010,77:191-199.
    [7] Turan M, Ozturk I. Influence of different bioparticles on bed expansion characteristics of anaerobic fluidized bed reactors[J]. Journal of Environmental Science & Health Part A Toxic/hazardous Substances & Environmental Engineering, 2001, 36(6):1041-1053.
    [8] Wang S D, Wang D I. Pore dimension effects in the cell loading of a porous carrier[J]. Biotech & Bioeng, 2004,33(7):915-917.
    [9] Silverstein M S. Emulsion-templated porous polymers: a retrospective perspective[J]. Polymers, 2014,55(1):304-320.
    [10] Depardieu M, Viaud M, Buguin A, et al. A multiscale study of bacterial proliferation modes within novel E. coli@Si(HIPE) hybrid macrocellular living foams[J]. Journal of Materials Chemistry B, 2016, 4(13):2290-2303.
    [11] Feng Ying, Kang Yong, Fan Fuzhou, et al. Treatment of sulfate wastewater by iron-enhanced bioremediation [J]. China Water Supply and Drainage,2005,21(7):32-35(in Chinese).冯颖,康勇,范福洲,等.单质铁强化生物还原法处理硫酸盐废水[J].中国给水排水,2005,21(7):32-35.
    [12] Jin Xin, Wang Jin, Chen Tianhu, et al. Synergistic effect of iron oxide on the decomposition of sulfate minerals by sulfate reducing bacteria [J]. Journal of Mineral Sciences,2010,30(3):343-348(in Chinese).金鑫,王进,陈天虎,等.铁氧化物对硫酸盐还原菌分解硫酸盐矿物的协同作用[J].矿物学报,2010,30(3):343-348.
    [13] Lovley D R, Roden E E, Phillips E J P, et al. Enzymatic iron and uranium reduction by sulfate-reducing bacteria[J]. Marine Geology, 1993,113(1–2):41-53.
    [14] Haveman S A, Greene E A, Stilwell C P, et al. Physiological and gene expression analysis of inhibition of desulfovibrio vulgaris hildenborough by nitrite[J]. Journal of Bacteriology, 2004,186(23):7944.
    [15] Chen M, Zhou J, Zhang Y, et al. Fe(Ⅲ) EDTA and Fe(Ⅱ) EDTA-NO reduction by a sulfate reducing bacterium in NO and SO2 scrubbing liquor[J]. World Journal of Microbiology & Biotechnology, 2015,31(3):527-534.
    [16] Thamdrup B. Bacterial manganese and iron reduction in aquatic sediments[J]. Advances in Microbial Ecology, 2000,16:41-84.
    [17] Weber K A, Achenbach L A. Coates J D, et al. Microorganisms pumping iron: anaerobic microbial iron oxidation and reduction[J]. Nature Review Microbiology, 2006, 4:752-764.
    [18] Guan Chenglan, Sun Zhengguang, Zhang Yuhong, et al. Preparation of polysiloxane cross-linking agent and its application in polymer porous materials [J]. Journal of composite materials,2015,32(6):1807-1813(in Chinese).官成兰,孙争光,张玉红, 等.聚硅氧烷型交联剂的制备及其在聚合物多孔材料中的应用[J].复合材料学报,2015,32(6):1807-1813.
    [19] Duan Zhanli, Ma Lianxiang, Li Haitao, et al. Preparation and study of oil based nano-magnetic fluid [J]. Experimental Science and Technology,2008,6(6):37-40(in Chinese).段占立,马连湘,李海涛, 等.Fe3O4油基纳米磁流体制备与研究[J].实验科学与技术,2008,6(6):37-40.
    [20] Hong Yong, Shi Hongbing, Liu Jie, et al. Preparation and characterization of mechanical oil-base Fe3O4 magnetic fluid coated with oleic acid [J]. Shandong Chemical Engineering,2015,44(7):16-19(in Chinese).洪勇,史红兵,刘杰, 等.油酸包覆的机油基Fe3O4磁流体的制备及表征[J].山东化工,2015,44(7):16-19.
    [21] Lee W,Characklis W G. Corrosion of mild steel under anaerobic biofilm[J]. Corros Sci, 1993, 49(3):187-199.
    [22] Feng Rui. Improved determination of sulfate ion concentration in mixed solution [J]. Chemical Technology and Development,2014,43(8):44(in Chinese).冯瑞.混合溶液中硫酸根离子浓度测定方法的改进[J].化工技术与开发,2014,43(8):44.
    [23] Hu Jingrong, Lu Haoyong, Liu Huiling, et al. Synthesis of magnetic polystyrene-chloromethylstyrene materials and their adsorption properties for anthracene [J]. Journal of Analysis and Testing,2017,36(4):464-470(in Chinese).胡静荣,吕浩永,刘惠玲,等.磁性聚苯乙烯-氯甲基苯乙烯材料的合成及其对蒽的吸附性能研究[J].分析测试学报,2017,36(4):464-470.
    [24] Meng L Y, Park S J. Superhydrophobic carbon based materials: a review of symthesis, structure, and applications[J]. Carbon Lett, 2014, 15:89-104.
    [25] Chen Bo, Guan Chenglan, Chen Xueqin, et al. Effect of crosslinkers on the structure and properties of polystyrene porous materials [J]. Journal of Hubei University (Natural Science Edition),2017,39(2):152-154(in Chinese).陈博,官成兰,陈学琴,等.交联剂对聚苯乙烯多孔材料结构及性能的影响[J].湖北大学学报(自然科学版),2017,39(2):152-154.
    [26] Gu Yun, Yang Hong, Wu Xuan, et al. Effects of salt on the oxidation capacity of a sulfur oxidizing bacterium [J]. Journal of Environmental Engineering,2015,9(1):491-494(in Chinese).顾运,杨宏,吴宣,等.盐分对一株硫氧化细菌氧化能力的影响[J].环境工程学报,2015,9(1):491-494.