一次回流型降雪过程的成因和相态判据分析
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Causes and Phase Criteria of a Return-Flow Snowfall
  • 作者:杨晓君 ; 张楠 ; 陈宏 ; 韩婷婷
  • 英文作者:Yang Xiaojun;Zhang Nan;Chen Hong;HanTingting;Tianjin Meteorological Observatory;
  • 关键词:回流降雪 ; 相态转换 ; 成因与机理
  • 英文关键词:return flow;;phase transition;;cause and mechanism
  • 中文刊名:QXKJ
  • 英文刊名:Meteorological Science and Technology
  • 机构:天津市气象台;
  • 出版日期:2019-02-15
  • 出版单位:气象科技
  • 年:2019
  • 期:v.47;No.272
  • 基金:国家自然科学基金(41575049);; 天津市应用基础与前沿技术研究计划(青年项目)资助(15JCQNJC07600);; 天津市气象局科研项目(2018041xxm01)资助
  • 语种:中文;
  • 页:QXKJ201901012
  • 页数:8
  • CN:01
  • ISSN:11-2374/P
  • 分类号:100-107
摘要
利用常规高空和地面观测资料、天津铁塔和雷达资料、全球资料同化系统(GDAS)分析资料、雷达变分同化分析系统资料、EC和NCEP再分析资料对2016年11月20—21日天津初雪天气进行成因分析,结果表明:本次过程是在高空槽和回流冷空气共同作用下产生的,主要水汽来源为对流层中低层槽前西南暖湿气流和回流东风,回流东风经渤海低空运行时吸收水汽由"干冷"变为"湿冷";动力条件主要来自回流冷垫的动力抬升作用,降水期间回流东风层厚度由1.5km增加至2km;锋面上的非地转次级环流可将回流东风水汽向上输送成为降水原料,同时可加强其上暖湿空气的垂直上升运动;高空云水粒子向云冰粒子的转换和边界层回流冷空气加强对本次雨雪相态转换是不可或缺的,回流冷空气北风分量风速和厚度陡增、800~950hPa出现均温层、云冰粒子陡增并向低空延伸、700~850hPa与850~1000hPa厚度的变化特征对雨雪相态的判别均有较好的指示作用。
        Based on the conventional meteorological data,observation data of the Tianjin Observation Tower,radar data,VDRAS data(Variation Doppler Radar Analysis System),and NCEP reanalysis data(ECWMF and National Centre of Environmental Prediction),the causes of the first snow weather process on 20 and 21 November 2016 in Tianjin are analyzed.The results show:the mixed rain-snow storm was produced in the interaction of the upper trough and return-flow cold air;the main sources of water vapor were the southwest warm and humid airflow in front of the trough in the middle and lower troposphere and the returning east winds.The returning east wind absorbed moisture when it passed through the low surface of the Bohai Sea and became wet and cold;the dynamic condition was mainly from the dynamic lifting of the cold return flow,the thickness of the returning easterly increased from 1.5 km to 2 km during precipitation.The non-geostrophic secondary circulation transported the returning water vapor upwards into a source for precipitation,and strengthened the vertical ascending motion of the warm and humid air to provide dynamic conditions.The north wind component wind speed and thickness of the cold air increased sharply.Simultaneously,the conversion of high-altitude cloud water particles to cloud ice particles and the reflow of cold air at the boundary layer were indispensable for the transformation from rain to snow,and the uniform temperature layer and cloud ice particles of 800 to 950 hPa increased greatly and extended to low altitudes.The variation characteristics of the potential thickness of 700 to 850 and 850 to 1000 hPa had good indication value for the discrimination of rain and snow phases.
引文
[1]张迎新,瑞钦,张守保.回流暴雪过程的诊断分析和数值试验[J].气象,2007,33(9):25-32.
    [2]何群英,孙一昕,于莉莉.渤海西岸边界层东风与暴雪天气的机理分析[J].气象与环境学报,2011,27(4):66-71.
    [3]李青春,程丛兰,高华,等.2011.北京一次冬季回流暴雪天气过程的数值分析[J].气象,37(11):1380-1388.
    [4]周雪松,谈哲敏.华北回流暴雪发展机理个例研究[J].气象,2008,34(2):18-36.
    [5]翟亮,王令,刘文军.两次降雪天气过程预报中边界层风廓线雷达资料的应用[J].气象科技,2012,40(5):783-788.
    [6]李国翠,张迎新,李国平,等.应用GPS可降水量分析河北省一次回流降雪天气[J].气象科技,2012,40(6):990-995.
    [7]王亮,王春明.一次雨夹雪转暴雪天气过程的微物理模拟研究[J].气象与环境学报,2010,26(2):31-39.
    [8]田秀霞,宋晓辉,程序,等.华北南部一次回流暴雪天气的诊断分析[J].气象与环境学报,2011,27(1):35-39.
    [9]张广周,沈桐立,李戈,等.一次暴雪天气的数值模拟及诊断分析[J].气象,2008,34(9):65-72.
    [10]李海军,张雪慧,潘士雄.伴随对流层中低层气温持续下降的雪转雨过程分析[J].气象科技,2015,43(6):1164-1169.
    [11]王东海,端义宏,梁钊明,等.一次秋季温带气旋的雨雪天气过程分析[J].气象学报,2013,71(4):606-627.
    [12]徐建国,赵立清,宋玉红,等.内蒙古东南部降水相态判据的对比分析[J].气象科技,2016,44(6):979-984.
    [13]马秀玲,彭九慧,杨雷斌等.华北地区一次局地暴雪天气过程的诊断分析[J].干旱气象,2008,26(1):64-68.
    [14]吴伟,邓莲堂,王式功.“0911”华北暴雪的数值模拟及云微物理特征分析[J].气象,2011,37(8):991-998.
    [15]夏茹娣,王东海,张立生.2009年冬季华北初雪对流层低层风场及大气层结特征[J].气候与环境研究,2013,18(1):87-100.
    [16]叶晨,王建捷,张文龙.北京2009年“1101”暴雪的形成机制[J].应用气象学报,2011,22(4):398-410.
    [17]Makra L,Matyasovszky I,Guba Z,et al.Monitoring the long-range transport effects on urban PM10levels using 3Dclusters of backward trajectories[J].Atmos Environ,2011.45(16):2630-2641.
    [18]江志红,梁卓然,刘征宇,等.2007年淮河流域强降水过程的水汽输送特征分析[J].大气科学,2011.35(2):361-372.
    [19]Draxler R R,Hess G D.An overview of the Hysplit_4modeling system for trajectories,dispersion,and deposition[J].Aust Meteor Mag,1998,47(4):295-308.
    [20]Draxler R R,Stunde B,Rolph G.Hysplit_4users guide[R].NOAA Technical Memorandum ERL ARL,2009:224.
    [21]张琳娜,郭锐,曾剑,等.北京地区冬季降水相态的识别判据研究[J].高原气象,2013.32(6):1780-1786.
    [22]Lowndes C A S,Beyon A,Hawson C L.An assessment of some snow predictors[J].Meteorological Magazine,1974,103:341-358.
    [23]Heppner P O G.Snow versus rain:Looking beyond the“Magic”number[J].Weather and Forecasting,1992,7(04):683-691.
    [24]Czys R R,Scott R W,Tang K C.A physically based nondimensional parameter for discriminating between loca tions of freezing rain and ice pellets[J].Weather and Fore casting,1996(4):591-598.
    [25]漆梁波,张瑛.中国东部地区冬季降水相态的识别判据研究[J].气象,2012,38(1):96-102.