压电波形对喷墨打印电极的调控规律
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Regulation Rules of Piezoelectric Waveform on Ink-jet Printing Electrode
  • 作者:宁洪龙 ; 朱镇南 ; 陶瑞强 ; 陈建秋 ; 周艺聪 ; 蔡炜 ; 胡诗犇 ; 姚日晖 ; 徐苗 ; 王磊 ; 兰林锋 ; 彭俊彪
  • 英文作者:NING Hong-long;ZHU Zhen-nan;TAO Rui-qiang;CHEN Jian-qiu;ZHOU Yi-cong;CAI Wei;HU Shi-ben;YAO Ri-hui;XU Miao;WANG Lei;LAN Lin-feng;PENG Jun-biao;Institute of Polymer Optoelectronic Materials and Devices,State Key Laboratory of Luminescent Materials and Devices,Material College,South China University of Technology;
  • 关键词:喷墨打印 ; 加压速率 ; 脉冲持续时间 ; TFT电极 ; 表面粗糙度
  • 英文关键词:ink-jet printing;;slew rate;;duration;;electrode of thin film transistor;;surface roughness
  • 中文刊名:FGXB
  • 英文刊名:Chinese Journal of Luminescence
  • 机构:华南理工大学材料科学与工程学院高分子光电材料与器件研究所,发光材料与器件国家重点实验室;
  • 出版日期:2017-05-15
  • 出版单位:发光学报
  • 年:2017
  • 期:v.38
  • 基金:国家自然科学基金重大集成项目(U1601651);; 973国家重点基础研究发展计划(2015CB655004);; 国家重点研发计划专项(2016YFB0401504,2016YFF0203603);; 广东省自然科学基金(2016A030313459);; 广东省科技计划(2014B090915004,2015B090914003,2016A040403037,2016B090907001,2016B090906002);; 中央高校基本科研业务费专项资金(2015ZP024,2015ZZ063);; 广东省高校珠江学者资助计划(2016)资助项目~~
  • 语种:中文;
  • 页:FGXB201705008
  • 页数:6
  • CN:05
  • ISSN:22-1116/O4
  • 分类号:61-66
摘要
压电喷墨打印是制备印刷电子器件的主要手段之一,其墨滴喷射状态直接受压电波形的影响,因而压电波形对于器件打印具有重要意义。本文主要研究了压电波形对薄膜晶体管(TFT)电极打印效果的影响,实验通过改变压电波形的加压速率和脉冲持续时间,打印得到了一系列的电极样品,并对其图形效果及表面粗糙度进行了测量。实验表明,随着加压速率和脉冲持续时间的增大,墨滴喷出动能增大,最终打印的图形效果先改善后恶化,表面粗糙度则随之增大。在加压速率取值为0.08~1.65 V/μs、脉冲持续时间取值为1.216~2.688μs的区间内得到了失真程度较小的电极图形,在加压速率及脉冲持续时间分别为0.25 V/μs、2.688μs及0.65 V/μs、1.600μs时,电极图形化效果较好,表面粗糙度分别为59.04 nm和59.27 nm。通过对压电波形参数的合理设置,能够实现对打印图形效果的优化。
        Piezoelectric printing is one of the main processes of printed electronics. In this process,piezoelectric waveform has a direct impact on the spray regime of ink droplets,which will play an important role in the devices printing. In this text,effect of piezoelectric waveform on printing thin film transistor(TFT) electrode was studied. By changing slew rate and duration,the piezoelectric waveform parameters,a series of printing samples were obtained,and their patterning quality and surface roughness were measured. With the increasing of the slew rate and duration,the kinetic energy of the ink droplet increases,the patterning quality improves first and then deteriorates,and the surface roughness of final printing pattern gets higher. TFT electrodes with fine pattern are fabricated when the slew rate is from 0. 08 V/μsto 1. 65 V/μs,and the duration is from 1. 216 μs to 2. 688 μs. Fine-patterned TFT electrodes with surface roughness of 59. 04 nm and 59. 27 nm are fabricated when the slew rate and duration are 0. 25 V/μs,2. 688 μs and 0. 65 V/μs,1. 600 μs,respectively. By adjusting the parameters of piezoelectric waveform,the optimization of printing quality can be achieved.
引文
[1]邹竞.国外印刷电子产业发展概述[J].影像科学与光化学,2014,32(4):342-381.ZOU J.Review of progress in printed electronics industry[J].Imag.Sci.Photochem.,2014,32(4):342-381.(in Chinese)
    [2]SINGH M,HAVERINEN H M,DHAGAT P,et al..Inkjet printing-process and its applications[J].Adv.Mater.,2010,22(6):673-685.
    [3]STURM J C,WU C C,MARCY D,et al..Fabrication of organic semiconductor devices using ink jet printing:US,6087196[P].2000-07-11.
    [4]HOTH C N,SCHILINSKY P,CHOULIS S A,et al..Printing highly efficient organic solar cells[J].Nano Lett.,2008,8(9):2806-2813.
    [5]徐华,兰林锋,李民,等.源漏电极的制备对氧化物薄膜晶体管性能的影响[J].物理学报,2014,63(3):038501-1-6.XU H,LAN L F,LI M,et al..Effect of source/drain preparation on the performance of oxide thin-film transistors[J].Acta Phys.Sinica,2014,63(3):038501-1-6.(in Chinese)
    [6]WHITTOW W,CHAURAYA A,VARDAXOGLOU J C,et al..Inkjet printed microstrip patch antennas realized on textile for wearable applications[J].IEEE Antenn.Wireless Propag.Lett.,2014,13:71-74.
    [7]SHUKLA S,STANIER D,SAHA M S,et al..Analysis of inkjet printed PEFC electrodes with varying platinum loading[J].J.Electrochem.Soc.,2016,163(7):F677-F687.
    [8]RHO Y,KANG K T,LEE D.Highly crystalline Ni/Ni O hybrid electrodes processed by inkjet printing and laser-induced reductive sintering under ambient conditions[J].Nanoscale,2016,8(16):8976-8985.
    [9]MA H B,SU Y,JIANG C,et al..Inkjet-printed Ag electrodes on paper for high sensitivity impedance measurements[J].RSC Adv.,2016,6(87):84547-84552.
    [10]KHAN Y,PAVINATTO F J,LIN M C,et al..Inkjet-printed flexible gold electrode arrays for bioelectronic interfaces[J].Adv.Funct.Mater.,2016,26(7):1004-1013.
    [11]QIN Y H,KWON H J,SUBRAHMANYAM A,et al..Inkjet-printed bifunctional carbon nanotubes for p H sensing[J].Mater.Lett.,2016,176:68-70.
    [12]FINN D J,LOTYA M,COLEMAN J N.Inkjet printing of silver nanowire networks[J].ACS Appl.Mater.Interf.,2015,7(17):9254-9261.
    [13]PATIL B R,SHANMUGAM S,TEUNISSEN J P,et al..All-solution processed organic solar cells with top illumination[J].Org.Electron.,2015,21:40-46.
    [14]POSPISIL J,SCHMIEDOVA V,ZMEKAL O,et al..Study of optical and electrical properties of organic thin films for photovoltaic applications[J].Mater.Sci.,2015,21(3),doi:10.5755/j01.ms.21.3.7278.
    [15]SWISHER S L,LIN M C,LIAO A,et al..Impedance sensing device enables early detection of pressure ulcers in vivo[J].Nat.Commun.,2015,6:6575.
    [16]JO B W,LEE A,AHN K H,et al..Evaluation of jet performance in drop-on-demand(DOD)inkjet printing[J].Korean J.Chem.Eng.,2009,26(2):339-348.
    [17]LIU Y F,PAI Y F,TSAI M H,et al..Investigation of driving waveform and resonance pressure in piezoelectric inkjet printing[J].Appl.Phys.A,2012,109(2):323-329.
    [18]GAN H Y,SHAN X C,ERIKSSON T,et al..Reduction of droplet volume by controlling actuating waveforms in inkjet printing for micro-pattern formation[J].J.Micromech.Microeng.,2009,19(5):055010.
    [19]LIU Y F,TSAI M H,PAI Y F,et al..Control of droplet formation by operating waveform for inks with various viscosities in piezoelectric inkjet printing[J].Appl.Phys.A,2013,111(2):509-516.
    [20]KWON K S.Experimental analysis of waveform effects on satellite and ligament behavior via in situ measurement of the drop-on-demand drop formation curve and the instantaneous jetting speed curve[J].J.Micromech.Microeng.,2010,20(11):115005.
    [21]YOON S S,DESJARDIN P E,PRESSER C,et al..Numerical modeling and experimental measurements of water spray impact and transport over a cylinder[J].Int.J.Multiph.Flow,2006,32(1):132-157.
    [22]WILDEMAN S,VISSER C W,SUN C,et al..On the spreading of impacting drops[J].J.Fluid Mech.,2016,805:636-655.
    [23]焦云龙,刘小君,逄明华,等.固体表面液滴铺展与润湿接触线的移动分析[J].物理学报,2016,65(1):016801-1-8.JIAO Y L,LIU X J,PANG M H,et al..Analyses of droplet spreading and the movement of wetting line on a solid surface[J].Acta Phys.Sinica,2016,65(1):016801-1-8.(in Chinese)
    [24]毕菲菲,郭亚丽,沈胜强,等.液滴撞击固体表面铺展特性的实验研究[J].物理学报,2012,61(18):184702-1-6.BI F F,GUO Y L,SHEN S Q,et al..Experimental study of spread characteristics of droplet impacting solid surface[J].Acta Phys.Sinica,2012,61(18):184702-1-6.(in Chinese)