风洞捕获轨迹试验六自由度机构运动学与误差分析
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Kinematics and Error Analysis of 6-DOF Mechanism in Wind Tunnel Captive Trajectory System Test
  • 作者:贾波 ; 宋代平 ; 全先轲 ; 姜安林
  • 英文作者:JIA Bo;SONG Daiping;QUAN Xianke;JIANG Anlin;State Key Laboratory of Mechanical Transmission , Chongqing University;Foshan Midea Group;
  • 关键词:六自由度机构 ; D-H参数法 ; 运动学 ; 误差模型
  • 英文关键词:6-DOF mechanism;;D-H parameter method;;kinematics;;error model
  • 中文刊名:MECH
  • 英文刊名:Machinery
  • 机构:重庆大学机械传动国家重点实验室;佛山美的集团公司;
  • 出版日期:2019-06-15
  • 出版单位:机械
  • 年:2019
  • 期:v.46
  • 语种:中文;
  • 页:MECH201906003
  • 页数:5
  • CN:06
  • ISSN:51-1131/TH
  • 分类号:19-23
摘要
为提升风洞捕获轨迹试验的水平,设计了一套模拟外挂物从母机分离运动轨迹特性的六自由度机构。通过D-H法进行运动学分析,建立该机构运动学方程,利用解析法对机构进行逆运动学求解。采用微分传递法建立基于D-H参数的静态误差模型,推导出末端外挂物模型位姿误差与D-H参数误差之间的数学表达式,然后采用奇异值分解改进的最小二乘法进行迭代求解辨识出参数误差,在此基础上随机选取100组位姿数据,分析比较了补偿前与补偿后的位置误差,结果表明经过参数辨识后的补偿法能够有效地提高六自由度机构末端的定位精度。
        In order to improve the research ability of wind tunnel capture trajectory test, a 6-DOF mechanism is designed to simulate trajectory characteristics of external store separation from mother machine. Firstly,Kinematics analysis of 6-DOF mechanism is carried out by using the D-H parameter method, and then the kinematics equation was established, therefore the mechanism of inverse kinematics is solved by using the analytic method. Secondly, the structure of transmission error model were established by using differential method based on 6-DOF mechanism of D-H parameters. Mathematical expression was deduced to store end pose error and kinematic parameter errors. Then by using least squares method improved from singular value decomposition, the parameters of errors were iteratively identified. On this basis, 100 groups of position data were randomly selected, and the position error before and after compensation were analyzed and compared. The results show that the compensation method of parameter identification can effectively improve the positioning accuracy of the 6-DOF mechanism.
引文
[1]杨操.跨声速风洞捕获轨迹试验六自由度机构设计与研究[D].重庆:重庆大学,2016.
    [2]黄勇刚,黄茂林,秦伟.平面5R并联机器人约束误差影响分析[J].机械工程学报,2010,46(7):42-47.
    [3]RAUF A,RYU J.Fully autonomous calibration of parallel manipulators by imposing position constraint[C].Washington.D.C.,USA:Proceedings of International Conference on Robotics and Automation.,IEEE,2001:2389-2394.
    [4]裴葆青,罗学科,陈五一.6 UPS并联机构静态误差的矢量标定[J].中国机械工程,2006,17(8):854-857.
    [5]谢福贵,刘辛军.一种新型虚拟中心并联机构的误差灵敏度分析[J].机械工程学报,2013,49(17):85-91.
    [6]党磊,熊瑞平,唐静莹,孙飞.同伦算法在6R机器人运动学逆解上的应用[J].机械,2017,44(4):2-3.
    [7]Haihong Pan,Bing Fu,Lin Chen.The Inverse Kinematics Solutions of Robot Manipulators with Offset Wrist Using the Offset Modification Method[J].Springer Berlin Heidelberg,2011(122):655-663.
    [8]C.Mavroidis,J.Flanz,S.Dubowsky.High Performance Medical Robot Requirements and Accuracy Analysis[J].Robotics and Computer-Integrated Manufacturing,2007,14(5):329-338.
    [9]A Gonzalez-Rodriguez,FJ Castillo-Garcia.On the effects of the design of cable-Driven robots on kinematics and dynamics models accuracy[J].Mechatronics,2017(43):18-27.
    [10]范云龙,张奇峰.深海五功能电动机械手误差建模与仿真[J].计算机仿真,2015(12):345-348.
    [11]何锐波,赵英俊,韩奉林,等.基于指数积公式的串联机构运动学参数辨识实验[J].机器人,2011,33(1):35-39.
    [12]顶驱内防喷器可靠性试验研究.高露,石鑫,孙琳,等.一种新型巡检机器人的结构设计与运动学分析[J].机械研究与应用,2017,30(5):38-40.