不同负荷运动训练对大鼠骨骼肌线粒体三羧酸循环的影响及其机制研究
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Effect of Different Load Exercise Training on Mitochondrial Tricarboxylic Acid Cycle in Rat Skeletal Muscle and its Mechanism
  • 作者:李洁 ; 杨静 ; 赵丽丽
  • 英文作者:LI Jie;YANG Jing;ZHAO Lili;College of P.E.,Northwest Normal Univ.;Gansu Normal Univ.for Nationalities;
  • 关键词:骨骼肌 ; 运动负荷 ; 三羧酸循环 ; 酶活性 ; 基因表达 ; Ca~(2+)含量 ; NADH/NAD~+ ; ATP/ADP
  • 英文关键词:skeletal muscle;;exercise load;;tricarboxylic acid cycle;;enzymatic activity;;gene expression;;calcium content;;NADH/NAD+;;ATP/ADP
  • 中文刊名:WTXB
  • 英文刊名:Journal of Wuhan Institute of Physical Education
  • 机构:西北师范大学体育学院;甘肃民族师范学院;
  • 出版日期:2019-05-15
  • 出版单位:武汉体育学院学报
  • 年:2019
  • 期:v.53;No.342
  • 基金:国家自然科学基金项目(31760295)
  • 语种:中文;
  • 页:WTXB201905014
  • 页数:7
  • CN:05
  • ISSN:42-1105/G8
  • 分类号:89-95
摘要
目的:探讨不同负荷运动训练对大鼠骨骼肌线粒体三羧酸循环的影响及其机制。方法:将雄性Wistar大鼠50只随机均分为5组:安静对照组(C)、低负荷运动训练组(LT)、中等负荷运动训练组(MT)、高负荷运动训练组(HT)和极高负荷运动训练组(ST),每组10只。各运动组分别进行6周的跑台运动训练。训练方案结束后,取腓肠肌样本,提取线粒体,测定线粒体柠檬酸合成酶(CS)、异柠檬酸脱氢酶(ICD)和α—酮戊二酸脱氢酶(α-KGDHC)活性;线粒体Ga~(2+)含量、胞浆NADH、NAD~+、ATP和ADP含量,以及ICD mRNA转录水平。结果:(1)不同负荷运动训练组线粒体CS、ICD和α-KGDHC的活性均显著高于安静对照组(P<0.01),且CS和ICD活性由高到低顺序均为:MT组>HT组>ST组>LT组>C组,α-KGDHC活性由高到低顺序为:HT组>MT组>ST组>LT组>C组。(2)不同负荷运动训练组线粒体Ca~(2+)含量均显著高于安静对照组(P<0.01),其含量由高到低顺序为:MT组>HT组>ST组>LT组>C组;胞浆NADH/NAD~+和ATP/ADP的比值均显著低于安静对照组(P<0.01),其比值由低到高顺序为:MT组HT组>ST组>LT组>C组。结论:低负荷、中等负荷、高负荷及极高负荷运动训练均可提高大鼠骨骼肌线粒体三羧酸循环功能,且中等负荷运动训练效果最佳。其机制与胞浆NADH/NAD~+和ATP/ADP比值、线粒体摄钙能力及限速酶基因的表达有关。
        The objective of this paper was to study of effect of different load exercise training on the mitochondrial tricarboxylic acid cycle in rat skeletal muscle and its mechanism. Fifty male Wistar rats were randomly divided into 5 groups(n=10): control(C),low-intensity exercise training(LT),mid-intensity exercise training(MT),high intensity exercise training(HT) and strong high intensity exercise training(ST) groups. LT,MT,HT and ST groups received 6-week treadmill training. After training of 6 weeks, all the rats from 5 groups were sacrificed to obtain gastrocnemius muscles samples, and muscle mitochondria were extracted by differential centrifugation. The activities of citrate synthase(CS), isocitrate dehydrogenase(ICD), α-ketoglutarate dehydrogenase(α-KGDHC), content of Calcium in mitochondria, content of NADH, NAD+, ATP and ADP in cytoplasm and ICD gene expression level were measured. The results were as follows:(1)In the different intensity exercise training group, the activity of CS、ICD and α-KGDHC were increased significantly compared with C group in gastrocnemius muscle of mitochondria ( P < 0. 01). CS and ICD activity was MT > HT > ST > LT > C and α-KGDHC activity was followed by HT > MT > ST > LT > C.( 2) In the different intensity exercise training group,the content of Ca2 +were increased significantly compared with C group in gastrocnemius muscle of mitochondria( P <0. 01). Its content was followed as MT > HT > ST > LT > C; NADH/NAD + and ATP/ADP ratio were increased significantly compared with C group in rat gastrocnemius muscles of mitochondria( P < 0. 01),and the ratio was followed as MT < ST < HT < LT < C.( 3) In the different intensity exercise training group,ICD expression level were increased significantly by compared with C group in mitochondria of rat gastrocnemius muscles( P < 0. 01),and the expression level was followed as MT > HT > ST > LT > C. It could be concluded that the low-intensity,mid-intensity,high intensity and strong high intensity exercise training could increase activities of limiting enzymes of tricarboxylic acid cycle in skeletal muscle mitochondria. Mid-high intensity exercise training had the best effect. Its mechanism was related to NADH/NAD + and ATP/ADP in cytoplasm,ability of mitochondria calcium uptake and enzymatic gene expression level.
引文
[1] 李开刚,陆绍中.不同强度的耐力训练后大鼠骨骼肌超微结构适应性变化的研究[J].中国运动医学杂志,2000,19(1):39-42.
    [2] 李开刚,陆绍中,冯连世,等.不同强度耐力训练后大鼠骨骼肌酶活性适应性变化的研究[J].中国运动医学杂志,2002,21(2):166-169.
    [3] DrakeJ C,Wilson R J,Yan Z.Molecular mechanisms for mitochondrial adaptation to exercise training in skeletal muscle[J].Faseb J,2016,30(1):13-22.
    [4] Bedford T G,Tipton C M,Wilson N C,et al.Maximum oxygen consumption of rats and its changes with various experimental procedures [J].J Appl Physiol,1979,47 (6):1278-1283.
    [5] 陈佩杰,魏勇,杨德洪.不同强度运动后大鼠心肌细胞热休克蛋白72 mRNA的表达[J].中国运动医学杂志,2004,23 (6):624-628.
    [6] 丁树哲,陈彩珍,漆正堂,等.不同强度训练对大鼠骨骼肌p53和细胞色素氧化酶I亚基基因和蛋白表达[J].中国运动医学杂志,2008,27 (4):454-457.
    [7] 周锦琳,田野.急性运动对大鼠骨骼肌线粒体Ga2+-ATP酶和H+-ATP酶活性的影响[J].北京体育大学学报,2001,24(3):320-322.
    [8] 谢琴,王福红.隔药灸及大强度耐力训练对大鼠体重和糖储备的影响[J].军事体育进修学院学报,2009,28(2):188-120.
    [9] 高和,李燕玉,沈丽英,等.耐力运动锻炼对正常及肺气肿大鼠隔肌、腓肠肌和心肌氧化性能的影响[J].中国运动医学杂志 2000,19(3):59-63.
    [10] Costill U F,Rasmussen H N.Human skeletal muscle mitochondrial capacity[J].Acta Physiol.Scand,2000,168:473-480.
    [11] Ramos-Filho D,Chicaybam G,De-Souza-Ferreira E,et al.High Intensity Interval Trainig(HIIT)Induces Specific Changes in Respiration and Electron Leakage in the Mitochondria of Different Rat Skeletal Muscles[J].PLoS One,2015,10(6):e0131766.
    [12] Terada S,Yokozeki T,Kawanaka K,et al.Effects of high-intensity swimming training on GLUT-4 and glucose transport activity in rat skeletal muscle[J].J Appl Physiol,2001,90:R2019-R2024.
    [13] Terada S,Tabata I,Higuchi M.Effects of high-intensity swimming training on fatty acid oxidation enzyme activity in rat skeletal muscle[J].Jpn J Physiol,2004,54:R47-R52.
    [14] VigelsA,Andersen N B,Dela F.The relationship between skeletal muscle mitochondrial citrate synthase activity and whole body oxygen uptake adaptations in response to exercise training[J]Int J Physiol Pathophysiol Pharmacol,2014,6(2):84-101.
    [15] Sembrowich WL,Quintinskge J J,Li G.Calcium Uptake in Mitochondrial from Different Skeletal Muscle Types[J].J Appl Physiol,1985,59(1):137-141.
    [16] Gillis J M.Inhibition of Mitochondrial calcium uptake Slows down Relaxation in Mitochondrial rich Skeletal Muscles[J].J Muscle Res cell Motil,1997,18(4):473-483.
    [17] Chance B.Changes in fluorescence in a frog sartorius muscle following a twitch[J].Nature,1959,184:195-196.
    [18] Schantz P G.Plasticity of human skeletal muscle with special reference to effects of physical training on enzyme levels of the NADH shuttles and phyenotypic expression of slow and fast myofibrillar proteins[J].Acta Physiol Scand,1986,suppl:558.
    [19] Peete D.Vrbova G.Adaptation of mammalian skeletal muscle fibers to chronic electrical strulation(1) [J].Rev Phvsiol Biochem Pharmacol,1992,120(1):115-202.
    [20] Niklas P,Li W,Jens W,et al.Mitochondrial gene expression in elite cyclists:effects of high-intensity interval exercise[J].Eur J Appl Physiol ,2010,110:R597-R606.
    [21] Serpiello FR,McKenna MJ,Bishop DJ,et al.Repeated sprints alter signaling related to mitochondrial biogenesis in humans[J].Med Sci Sports Exerc,2012,44:R827-R834.
    [22] Granata C,Jamnick N A,Bishop D J.Principles of Exercise Prescription,and How They Influence exercise-induced Changes of Transcription Factors and Other Regulators of Mitochondrial Biogenesis[EB].https://doi.org/10.1007/s40279-018-0894-4.