全翼布局太阳能无人机滑跑特性分析与控制
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Taxiing Characteristic Analysis and Control for Full-Wing Solar-Powered Unmanned Aerial Vehicle
  • 作者:马振宇 ; 祝小平 ; 周洲
  • 英文作者:MA Zhenyu;ZHU Xiaoping;ZHOU Zhou;School of Astronautics,Northwestern Polytechnical University;School and Technology of Unmanned Aerial Vehicle Laboratory,Northwestern Polytechnical University;School of Aeronautics,Northwestern Polytechnical University;
  • 关键词:全翼布局 ; 太阳能无人机 ; 螺旋桨动力差动 ; 滑跑控制 ; 轨迹跟踪 ; 线性自抗扰
  • 英文关键词:full-wing;;solar-powered UAV;;differential propeller thrust;;taxiing control;;trajectory tracking;;linear active disturbance rejection control(LADRC);;improved vector field theory;;design;;simulation
  • 中文刊名:XBGD
  • 英文刊名:Journal of Northwestern Polytechnical University
  • 机构:西北工业大学航天学院;西北工业大学无人机特种技术重点实验室;西北工业大学航空学院;
  • 出版日期:2019-02-15
  • 出版单位:西北工业大学学报
  • 年:2019
  • 期:v.37;No.175
  • 语种:中文;
  • 页:XBGD201901002
  • 页数:6
  • CN:01
  • ISSN:61-1070/T
  • 分类号:14-19
摘要
以全翼布局太阳能无人机为研究对象,针对其滑跑过程中没有前轮转向伺服和方向舵等进行控制的问题,提出了采用螺旋桨动力差动进行滑跑控制的方法。首先,建立了起落架前轮自由转向和前轮固支2种布局形式的全翼布局太阳能无人机滑跑模型,并对其在不同速度下的滑跑特性进行分析。然后,基于线性自抗扰控制方法设计了以螺旋桨动力差动为控制输出的偏航角控制器。最后,通过改进向量场轨迹跟踪方法,设计了适合起降滑跑的直线轨迹跟踪器。仿真结果表明,所设计的控制器能够对全翼布局太阳能无人机的起降滑跑过程进行有效控制,并具有较好的鲁棒性。
        To solve the taxiing control problem of the full-wing solar-powered unmanned aerial vehicle( UAV)without front wheel steering servo and rudder,a control approach using differential propeller thrust to control the taxiing is proposed in this paper. Firstly,the taxiing mathematical models of two kinds of full-wing solar-powered UAVs with the front wheels turning freely or fixed are established. Meanwhile,the taxiing characteristics of fullwing solar-powered UAV in different taxiing speeds are analyzed. Secondly,based on the linear active disturbance rejection control( LADRC) theory,a yaw angle controller is designed by using differential propeller thrust as the control output. Finally,a straight line trajectory tracking scheme which is suitable for take-off and landing taxiing is designed on the base of improved vector field theory. Simulation results show that the designed controller has a good control effect on full-wing solar-powered UAV's take-off and landing taxiing periods,and better robustness.
引文
[1] FLITTIE K,CURTIN B. Pathfinder Solar-Powered Aircraft Flight Performance[C]∥23rd Atmospheric Flight Mechanics Conference,1998:4446
    [2] SEONG Y B,LIM J H,YEO M S,et al. HELIOS:Solar Rights Analysis System for Apartment Buildings[J]. Solar energy,2006,80(6):723-741
    [3]王勇,王英勋.无人机滑跑纠偏控制[J].航空学报,2008(增刊1):142-149WANG Yong,WANG Yingxu. Lateral Deviation Correction Control for UAV Taxiing[J]. Acta Aeronoutica et Astronautica Sinica,2008(suppl 1):142-149(in Chinese)
    [4]王彦雄,周洲,邵壮,等.飞翼布局无人机滑跑纠偏控制[J].西北工业大学学报,2016,34(4):593-601WANG Yanxiong,ZHOU Zhou,SHAO Zhuang,et al. Lateral Deviation Correction Control for Flying-Wing UAV Taxiing[J].Journal of Northwestern Polytechnical University,2016,34(4):593-601(in Chinese)
    [5]邓寅平,范彦铭.无人机四轮滑跑纠偏控制系统设计与仿真[J].系统仿真学报,2008,20(21):5929-5935DENG Yinping,FAN Yanming. Design and Simulation of Ground Taxiing System for UAV with Four Wheels[J]. Journal of System Simulation,2008,20(21):5929-5935(in Chinese)
    [6] GAO Z. Scaling and Bandwidth-Parameterization Based Controller Tuning[C]∥Proceedings of the American Control Conference,2006:4989-4996
    [7] BEARD R W,MCLAIN T W. Small Unmanned Aircraft:Theory and Practice[M]. New Jersey,Princeton University Press,2012:28-59
    [8] NELSON D R,BARBER D B,MCLAIN T W,et al. Vector Field Path Following for Miniature Air Vehicles[J]. IEEE Trans on Robotics,2007,23(3):519-29
    [9] SUJIT P,SARIPALLI S,SOUSA J B. Unmanned Aerial Vehicle Path Following:a Survey and Analysis of Algorithms for FixedWing Unmanned Aerial Vehicless[J]. IEEE Trans on Control Systems,2014,34(1):42-59