Explicitly correlated configuration interaction investigation on low-lying states of SiO~+ and SiO
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Explicitly correlated configuration interaction investigation on low-lying states of SiO~+ and SiO
  • 作者:李瑞 ; 梁桂颖 ; 林晓贺 ; 朱宇豪 ; 赵书涛 ; 吴勇
  • 英文作者:Rui Li;Gui-Ying Liang;Xiao-He Lin;Yu-Hao Zhu;Shu-Tao Zhao;Yong Wu;Department of Physics, College of Science, Qiqihar University;Institute of Applied Physics and Computational Mathematics;School of Physics and Electronic Science, Fuyang Normal University;HEDPS, Center for Applied Physics and Technology, Peking University;
  • 英文关键词:SiO+;;explicitly correlated configuration interaction;;transition dipole moment;;ionization energy
  • 中文刊名:ZGWL
  • 英文刊名:中国物理B
  • 机构:Department of Physics College of Science Qiqihar University;Institute of Applied Physics and Computational Mathematics;School of Physics and Electronic Science Fuyang Normal University;HEDPS Center for Applied Physics and Technology Peking University;
  • 出版日期:2019-04-15
  • 出版单位:Chinese Physics B
  • 年:2019
  • 期:v.28
  • 基金:Project supported by the National Key Research and Development Program of China(Grant No.2017YFA0402300);; the Science Challenge Project(Grant No.TZ2016005);; the China Postdoctoral Science Foundation(Grant No.2018M631404);; the National Natural Science Foundation of China(Grant No.11404180);; the University Nursing Program for Yong Scholars with Creative Talents in Heilongjiang Province,China(Grant No.UNPYSCT-2015095);; the Natural Science Research Project of Education Department of Anhui Province,China(Grant No.KJ2018A0342);; the Key Program of Excellent Youth Talent Project of Fuyang Normal University,China(Grant No.rcxm201801)
  • 语种:英文;
  • 页:ZGWL201904021
  • 页数:8
  • CN:04
  • ISSN:11-5639/O4
  • 分类号:161-168
摘要
SiO~+ and SiO, which play vital roles in astrophysics and astrochemistry, have long attracted considerable attention.However, accurate information about excited states of SiO~+ is still limited. In this work, the structures of 14 Λ–S states and 30? states of SiO~+ are computed with explicitly correlated configuration interaction method. On the basis of the calculated potential energy curves of those Λ–S states and ? states, the spectroscopic constants of bound states are evaluated, which are in good agreement with the latest experimental results. The predissociation mechanism of B~2Σ~+ state is illuminated with the aid of spin–orbit coupling matrix elements. On the basis of the calculated potential energy curves and transition dipole moments, the radiative lifetime for each of low-lying vibrational states B~2Σ~+and A~2Π is estimated. The laser cooling scheme of SiO~+ is proposed by employing B~2Σ~+–X~2Σ~+ transition. Finally, the vertical ionization energy values from SiO(X~1Σ~+) to ionic states: SiO~+ , X~2Σ~+, B~2Σ~+, and A~2Π are calculated, which agree well with experimental measurements.
        SiO~+ and SiO, which play vital roles in astrophysics and astrochemistry, have long attracted considerable attention.However, accurate information about excited states of SiO~+ is still limited. In this work, the structures of 14 Λ–S states and 30? states of SiO~+ are computed with explicitly correlated configuration interaction method. On the basis of the calculated potential energy curves of those Λ–S states and ? states, the spectroscopic constants of bound states are evaluated, which are in good agreement with the latest experimental results. The predissociation mechanism of B~2Σ~+ state is illuminated with the aid of spin–orbit coupling matrix elements. On the basis of the calculated potential energy curves and transition dipole moments, the radiative lifetime for each of low-lying vibrational states B~2Σ~+and A~2Π is estimated. The laser cooling scheme of SiO~+ is proposed by employing B~2Σ~+–X~2Σ~+ transition. Finally, the vertical ionization energy values from SiO(X~1Σ~+) to ionic states: SiO~+ , X~2Σ~+, B~2Σ~+, and A~2Π are calculated, which agree well with experimental measurements.
引文
[1]Scalo J M and Slavsky D B 1980 Astrophys.J.239 L73
    [2]Clegg R E S,IJzendoorn V,J L and Allamandola L J 1983 Mot.Not.R.Astr.Soc.203 125
    [3]Turner J L and Dalgarno A 1977 Astrophys.J.213 386
    [4]Millar T J 1980 Astrophys.Space Sci.72 509
    [5]Prasad S S and Huntress W T 1980 Astrophys.J.Suppl.S.43 1
    [6]Herbst E,Millar T J,Wlodek S and Bohme D K 1989 Astron.Astrophys.222 205
    [7]Tarafdar S P and Dalgarno A 1990 Astron.Astrophys.232 239
    [8]Langer W D and Glassgold A E 1990 Astrophys.J.352 123
    [9]Bauschlicher C W 2016 Chem.Phys.Lett.658 76
    [10]Hartquist T W,Dalgarno A and Oppenheimer M 1980 Astrophys.J.236 182
    [11]Neufeld D A and Dalgarno A 1989 Astrophys.J.344 251
    [12]Stollenwerk P R,Odom B C,Kokkin D L and Steimle T 2017 J.Mol.Spectrosc.332 26
    [13]Shuman E S,Barry J F and DeMille D 2010 Nature 467 820
    [14]Yzombard P,Hamamda M,Gerber S,Doser M and Comparat D 2015Phys.Rev.Lett.114 213001
    [15]Hamamda M,Pillet P,Lignier H and Comparat D 2015 J.Phys.B:At.Mol.Opt.Phys.48 182001
    [16]Collaboration T A,Baron J,Campbell W C,DeMille D,Doyle JM,Gabrielse G,Gurevich Y V,Hess P W,Hutzler N R,Kirilov E,Kozyryev I,O’Leary B R,Panda C D,Parsons M F,Petrik E S,Spaun B,Vutha A C and West A D 2014 Science 343 269
    [17]Cameron R,Scholl T J,Zhang L,Holt R A and Rosner S D 1995 J.Mol.Spectrosc.169 364
    [18]Scholl T J,Cameron R,Rosner S D and Holt R A 1995 Phys.Rev.A 512014
    [19]Scholl T J,Cameron R,Rosner S D and Holt R A 1995 Can.J.Phys.73 101
    [20]Rosner S D,Cameron R,Scholl T J and Holt R A 1998 J.Mol.Spectrosc.189 83
    [21]Zhang L,Cameron R,Holt R A,Scholl T J and Rosner S D 1993 Astrophys.J.418 307
    [22]Colbourn E A,Dyke J M,Lee E P F,Morris A and Trickle I R 1978Mol.Phys.35 873
    [23]Werner H J,Rosmus P and Grimm M 1982 Chem.Phys.73 169
    [24]Cai Z L and Franc?ois J P 1999 J.Mol.Spectrosc.197 12
    [25]Nguyen J H V and Odom B 2011 Phys.Rev.A 83 053404
    [26]Chattopadhyaya S,Chattopadhyay A and Das K K 2003 J.Mol.Struc.Theochem.639 177
    [27]Werner H J,Knowles P J,Knizia G,et al.2012 MOLPRO:a Package of ab initio Programs
    [28]Peterson K A,Adler T B and Werner H J 2008 J.Chem.Phys.128084102
    [29]Knowles P J and Werner H J 1985 Chem.Phys.Lett.115 259
    [30]Werner H J and Knowles P J 1985 J.Chem.Phys.82 5053
    [31]Shiozaki T,Knizia G and Werner H J 2011 J.Chem.Phys.134 034113
    [32]Balasubramanian K 1990 Chem.Rev.90 93
    [33]Alekseyev A B,Liebermann H P,Lingott R M,Bludsk′y O,Buenker RJ 1998 J.Chem.Phys.108 7695
    [34]Berning A,Schweizer M,Werner H J,Knowles P J and Palmieri P 2000Mol.Phys.98 1823
    [35]Le Roy R J 2002 LEVEL 7.5:a Computer Program for Solving the Radial Schr¨oinger Equation for Bound and Quasibound Levels(University of Waterloo,Chemical Physics Research Report CP-655)
    [36]Huber K P and Herzberg G 1979 Molecular Spectra and Molecular Structure IV,Constants of Diatomic Molecules(New York:Van Nostrand-Reinhold)
    [37]Ghosh S N,Van der Linde J and Verma R D 1979 J.Mol.Spectrosc.75169
    [38]Nagaraj S and Verma R D 1968 Can.J.Phys.46 1597
    [39]Kang S Y,Kuang F G,Jiang G,Li D B,Luo Y,Hui P F,Wang L P,Hu W Q and Shao Y C 2017 J.Phys.B:At.Mol.Opt.Phys.50 105103
    [40]Wan M,Di Y,Jin C,Wang F,Yang Y,You Y and Shao J 2016 J.Chem.Phys.145 024309
    [41]Hummon M T,Yeo M,Stuhl B K,Collopy A L,Xia Y and Ye J 2013Phys.Rev.Lett.110 143001
    [42]Truppe S,Williams H J,Hambach M,Caldwell L,Fitch N J,Hinds EA,Sauer B E and Tarbutt M R 2017 Nat.Phys.13 1173
    [43]Sun E P,Ren T Q,Liu Q X,Quan M,Zhang J J,Xu H F and Yan B2016 Chin.Phys.Lett.33 023101
    [44]Ibraguimova L B and Minaev B F 2016 Opt.Spectrosc.120 345
    [45]Cao J J,Gong T,Li Z H,Ji Z H,Zhao Y T,Xiao L T and Jia S T 2018Chin.Phys.Lett.35 103301
    [46]Wu D L,Tan B,Zeng X F,Wan H J,Xie A D,Yan B and Ding D J2016 Chin.Phys.Lett.33 63102
    [47]Moore C E 1971 Atomic Energy Levels(Washington,DC:National Bureau of Standard)
    [48]Cameron R,Scholl T J,Zhang L,Holt R A and Rosner S D 1995 J.Mol.Spectrosc.169 352