无机盐对聚甲基丙烯酸缩水甘油酯互通多孔材料的结构调控
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Interconnected porous poly(glycidyl methacrylate)material:microstructure modification by inorganic salt
  • 作者:王宇飞 ; 贾云祯 ; 秦亚琼 ; 郑丽萍 ; 李维实 ; 杨松
  • 英文作者:Wang Yufei;Jia Yunzhen;Qin Yaqiong;Zheng Liping;Li Weishi;Yang Song;School of Chemical Engineering and Food Science,Zhengzhou Institute of Technology;Zhengzhou Tobacco Research Institute of CNTC;Shanghai Institute of Organnic Chemistry,Chinese Academy of Sciences;
  • 关键词:高内相乳液聚合 ; 聚甲基丙烯酸缩水甘油酯 ; 无机盐 ; 互通多孔材料 ; 结构调控
  • 英文关键词:high internal phase emulsion polymerization;;poly(glycidyl methacrylate);;inorganic salt;;interconnected porous material;;microstructure modification
  • 中文刊名:HGXC
  • 英文刊名:New Chemical Materials
  • 机构:郑州工程技术学院化工食品学院;中国烟草总公司郑州烟草研究院;中国科学院上海有机化学研究所;
  • 出版日期:2018-08-15
  • 出版单位:化工新型材料
  • 年:2018
  • 期:v.46;No.551
  • 基金:国家自然科学基金项目(51003122);; 郑州烟草研究院院长基金项目(332016CA0210);; 河南省科技开放合作计划(172106000067);; 河南省高校青年骨干教师资助计划(2013GGJS-297)
  • 语种:中文;
  • 页:HGXC201808038
  • 页数:5
  • CN:08
  • ISSN:11-2357/TQ
  • 分类号:159-163
摘要
实现聚甲基丙烯酸缩水甘油酯互通多孔材料的结构调控,包括增加多孔材料的比表面积和调节孔径的大小,一直是聚合物材料研究的热点之一。采用高内相乳液模板法合成聚甲基丙烯酸缩水甘油酯互通多孔材料,通过扫描电子显微镜、氮气吸附脱附仪和压汞仪等对材料的结构进行了表征,研究了氯化钙(CaCl2)、氯化钠(NaCl)和硫酸镁(MgSO4)3种无机盐的类型及用量对聚甲基丙烯酸缩水甘油酯互通多孔材料比表面积、泡孔、窗孔及毛孔孔径的影响。结果表明:与采用二价无机盐CaCl2和MgSO4比较而言,采用一价无机盐NaCl制备的聚甲基丙烯酸缩水甘油酯互通多孔材料具有较大的比表面积、较小泡孔、窗孔和毛孔孔径;随着无机盐用量的增加,聚甲基丙烯酸缩水甘油酯互通多孔材料的比表面积逐渐增大,而泡孔、窗孔和毛孔孔径逐渐减小。
        Control over the microstructure of porous poly(glycidyl methacrylate)(poly GMA)materials,including their specific surface area,pore type and size,has long been one of central research topics in polymer science.A series of porous poly GMA materials were prepared by high internal phase emulsion polymerization with different inorganic salts,including CaCl2,NaCl and MgSO4.The effect of these inorganic salts and their feeding amount on their microstructures were investigated in detail by scanning electron microscopy(SEM),nitrogen adsorption/desorption instruments and mercury intrusion porosimetry.It was found that:poly GMAs prepared with the univalent salt,NaCl,had a larger surface area and a smaller void,interconnect and pore size,as compared with those prepared with CaCl2 or MgSO4 bivalent salt.With the increase of inorganic salt feeding amount,the specific surface area of poly GMA gradually increased,while it's void,interconnect and pore size gradually decreased.
引文
[1]Zhang H F,Cooper A I.Synthesis and applications of emulsion-templated porous materials[J].Soft Matter,2005,1:107-113.
    [2]刘华蓉,胡欣,杨松,等.聚合物互通多孔材料的乳液模板法制备及其功能化研究[J].化学进展,2009,21(4):672-676.
    [3]Krajnc P,Leber N,tefanec D,et al.Preparation and characterization of poly(high internal phase emulsion)methacrylate monoliths and their application as separation media[J].Journal of Chromatography A,2005,1065(1):69-73.
    [4]杨松,聂聪,孙学辉,等.聚甲基丙烯酸缩水甘油酯互通多孔材料选择性降低卷烟烟气中的苯酚[J].烟草科技,2012(8):47-51.
    [5]Jones M C,Gao H,Leroux J C.Reverse polymeric micelles for pharmaceutical applications[J].Journal of Controlled Release,2008,132(3):208-215.
    [6]Gao H,Elsabahy M,Giger E V,et al.Aminated linear and star-shape poly(glycerol methacrylate)s:synthesis and selfassembling properties[J].Biomacromolecules,2010,11(4):889-895.
    [7]Hui G,Ma Y,Lu X,et al.PH-Responsive nano-assemblies of amino poly(glycerol methacrylate)[J].European Polymer Journal,2011,47(6):1232-1239.
    [8]Barbetta A,Dentini M,Leandri L,et al.Synthesis and characterization of porous glycidylmethacrylate-divinylbenzene monoliths using the high internal phase emulsion approach[J].Reactive&Functional Polymers,2009,69(9):724-736.
    [9]Gong P J,Taniguchi T,Ohshima M.Nanoporous structure of the cell walls of polycarbonate foams[J].Journal of Materials Science,2014,49(6):2605-2617.
    [10]Okada K,Nandi M,Maruyama J,et al.Fabrication of mesoporous polymer monolith:a template-free approach[J].Chemical Communications,2011,47(26):7422-7424.
    [11]Pérez-García M G,Carranza A,Puig J E,et al.Porous monoliths synthesized via polymerization of styrene and divinyl benzene in nonaqueous deep-eutectic solvent-based HIPEs[J].RSC advances,2015(5):23255-23260.
    [12]Zhang X Q,Du Z J,Zou W,et al.A porous elastomeric polyurethane monolith synthesized by concentrated emulsion templating and its pressure-sensitive conductive property[J].RSCAdvances,2015,(5):65890-65896.
    [13]常海涛,鲁在君.高内相比乳液模板法合成多孔材料的研究进展常[J].化学通报,2007,70(11):829-833.
    [14]Cameron N R.High internal phase emulsion templating as a route to well-defined porous polymers[J].Polymer,2005,46:1439-1449.
    [15]Zhao C,Danish E,Cameron N R,et al.Emulsion-templated porous materials(PolyHIPEs)for selective ion and molecular recognition and transport:applications in electrochemical sensing[J].Journal of Materials Chemistry,2007,17:2446-2453.
    [16]Silnerstein M S.PolyHIPEs:recent advance in emulsion-templated porous polymers[J].Progress in Polymer Science,2014,39:199-234.
    [17]Kimmins S D,Cameron N R.Functional porous polymers by emulsion templating:recent advances[J].Advanced Functional Materials,2011,21:211-225.
    [18]官成兰,孙争光,陈博,等.有机硅交联剂对硅树脂/聚苯乙烯多孔复合材料性能的影响[J].复合材料学报,2016,33(1):77-83.
    [19]杨松,杨军,曾来,等.聚甲基丙烯酸缩水甘油酯互通多孔材料的制备及形貌调控[C]//2013年全国高分子学术论文报告会论文摘要集.上海[出版者不详],2013:398.
    [20]And A B,Cameron N R.Morphology and surface area of emulsion-derived(PolyHIPE)solid foams prepared with oilphase soluble porogenic solvents:three-Component surfactant system[J].Macromolecules,2004,37(9):3188-3201.
    [21]Williams J M,Wrobleski D A,Spatial distribution of the phases in water-in-oil emulsions.Open and closed microcellular foams from cross-linked polystyrene[J].Langmuir,1988,4(3):656-662.
    [22]Cameron N R,Sherrington D C,Albiston L,et al.Study of the formation of the open-cellular morphology of poly(styrene/divinylbenzene)polyHIPE materials by cryo-SEM[J].Colloid and Polymer Science,1996,274(6):592-595.