环向预应力三重钢管防屈曲支撑受力性能研究
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Study on Mechanical Behavior of Three-Tube BucklingRestrained Brace with Circumferential Pre-stress in Core Tube
  • 作者:高庆水 ; 田河 ; 杨毅 ; 张楚 ; 肖邵文 ; 胡树青
  • 英文作者:GAO Qingshui;TIAN He;YANG Yi;ZHANG Chu;XIAO Shaowen;HU Shuqing;Electric Power Research Institute,Guangdong Power Grid Corporation;Guangdong Diankeyuan Energy Technology Co.,Ltd.;Zhongtong Steel Structure Co.,Ltd.;
  • 关键词:三重钢管防屈曲支撑 ; 环向预应力 ; 摩擦力 ; 过盈装配 ; 滞回性能
  • 英文关键词:three-tube buckling-restrained brace(TTBRB);;circumferential pre-stress;;friction force;;interference fit;;hysteretic behavior
  • 中文刊名:JZJZ
  • 英文刊名:Progress in Steel Building Structures
  • 机构:广东电网有限责任公司电力科学研究院;广东电科院能源技术有限责任公司;中通钢构股份有限公司;
  • 出版日期:2019-01-04 09:33
  • 出版单位:建筑钢结构进展
  • 年:2019
  • 期:v.21;No.108
  • 基金:广东电网公司科技项目(GDKJQQ20153008)
  • 语种:中文;
  • 页:JZJZ201901008
  • 页数:10
  • CN:01
  • ISSN:31-1893/TU
  • 分类号:56-65
摘要
提出了一种具有环向预应力的三重钢管防屈曲支撑(three-tube buckling-restrained brace,TTBRB)。该防屈曲支撑由位于中间层提供轴向刚度和承载力并耗散地震能量的芯材钢管,以及分别位于芯材外部和内部限制芯材整体屈曲和局部屈曲的外套管和内套管等3部分组成。内、外套管与芯材钢管之间设置高分子聚乙烯材料制作的减摩层,以减小芯材轴向变形过程中内、外套管与芯材之间的摩擦力。相比用实心截面芯材的传统防屈曲支撑,用空心圆管作为芯材具有更大的回转半径;且取消了混凝土类填充材料,大幅度降低支撑自重,及混凝土损伤导致的耗能能力削弱。内、外套管能够限制芯材钢管的整体屈曲和局部屈曲,并可通过装配应力的方式对芯材钢管施加环向预应力,从而可改变芯材钢管的受拉或受压屈服强度。采用验证的有限元模型研究了内、外套管与芯材钢管之间的间隙和芯材钢管内环向预应力大小对TTBRB滞回性能的影响。分析结果表明,间隙较小时,芯材在轴力作用下的环向变形受到内、外套管的限制而产生环向应力,进一步施加环向预应力后,TTBRB的轴向拉压强度显著改变。仅外套管与芯材套管之间存在间隙时,TTBRB在受拉时可提前屈服,在受压时屈服强度不受影响,应作为三重钢管防屈曲支撑优先采用的方案。
        A new type of three-tube buckling-restrained brace(TTBRB)with circumferential pre-stress in core tube is proposed in this paper.The TTBRB is composed of one core tube in the middle to provide the axial stiffness,carrying axial load and dissipating earthquake energy.The two restraining tubes are outside and inside the core tube,respectively,to restrain the global and local buckling of the core tube.Ultra-high molecular weight poly-ethylene(UHMWPE)layers are arranged between the restraining tubes and the core tube to reduce the friction force when the core tube deforms axially.Compared with a BRB with a solid section core,the core tube has bigger gyration radius,and the self-weight can be greatly reduced.At the same time,no concrete-like material is infilled between the tube.Thus,the hystereticbehavior of the BRB is improved for the fracture of infilled material is prevented.The outer and inner tubes can restrain the deformation of the core tube in radius direction,which causes circumferential stress in the core tube.In turn,the axial compression or tension yield strength of the core tube is modified.Effects of gap between core tube and restraining tubes and circumferential pre-stress on hysteretic behavior of TTBRBs are presented.Analysis results show that the gap and circumferential pre-stress can significantly affect the hysteretic behavior of a TTBRB.The TTBRB with gap between the outer tube and the core tube should be recommended,for the core tube can yield in advance in tension and the compression yielding strength is not affected.
引文
[1] FederalEmergencyManagementAgency. NEHRP Recommended Provisions for Seismic Regulations for New Buildings and Other Structures:FEMA 450[S].Washington,D.C.:Federal Emergency Management Agency,2004.
    [2] KIMURA K,YOSHIOKA K,TAKEDA T,et al.Tests on braces encased by mortar in-filled steel tubes[C]//Summaries of Technical Papers of Annual Meeting.Architectural Institute of Japan,1976:1041-1042.
    [3]李国强,孙飞飞,陈素文,等.大吨位国产TJ II型屈曲约束支撑的研制与试验研究[J].建筑钢结构进展,2009,11(4):22-26.LI Guoqiang,SUN Feifei,CHEN Suwen,et al.Development and experiential study of large-tonnage domestic TJ II buckling restrained brace[J].Progress in Steel Building Structures,2009,11(4):22-26.(in Chinese)
    [4] ZHU B L,GUO Y L,ZHOU P,et al.Numerical and experimental studies of corrugated-web-connected bucklingrestrained braces[J].Engineering Structures,2017,134:107-124.DOI:10.1016/j.engstruct.2016.12.014.
    [5] PIEDRAFITA D,CAHIS X,SIMON E,et al.A new perforated core buckling restrained brace[J].Engineering Structures,2015,85:118-126.DOI:10.1016/j.engstruct.2014.12.020.
    [6] PIEDRAFITA D,CAHIS X,SIMON E,et al.A new modular buckling restrained brace for seismic resistant buildings[J].Engineering Structures,2013,56:1967-1975.DOI:10.1016/j.engstruct.2013.08.013.
    [7] CHOU C C,CHUNG P T,CHENG Y T.Experimental evaluation of large-scale dual-core self-centering braces and sandwiched buckling-restrained braces[J].Engineering Structures,2016,116:12-25.DOI:10.1016/j.engstruct.2016.02.030.
    [8] HOVEIDAE N,TREMBLAY R,RAFEZY B,et al.Numerical investigation of seismic behavior of short-core allsteel buckling restrained braces[J].Journal of Constructional Steel Research,2015,114:89-99.DOI:10.1016/j.jcsr.2015.06.005.
    [9]陈可鹏,李国强,刘玉姝,等.屈曲约束支撑低周疲劳性能及罕见地震下的累积损伤评估[J].建筑钢结构进展,2017,19(1):43-50.DOI:10.13969/j.cnki.cn31-1893.2017.01.006.CHEN Kepeng,LI Guoqiang,LIU Yushu,et al.Low-cycle fatigue performance of buckling restrained braces and assessment of cumulative damage under severe earthquakes[J].Progress in Steel Building Structures,2017,19(1):43-50.DOI:10.13969/j.cnki.cn31-1893.2017.01.006.(in Chinese)
    [10] CHEN Q,WANG C L,MENG S P,et al.Effect of the unbonding materials on the mechanic behavior of all-steel buckling-restrained braces[J].Engineering Structures,2016,111:478-493.DOI:10.1016/j.engstruct.2015.12.030.
    [11] HOSSEINZADEH S H,MOHEBI B.Seismic evaluation of all-steel buckling restrained braces using finite element analysis[J].Journal of Constructional Steel Research,2016,119:76-84.DOI:10.1016/j.jcsr.2015.12.014.
    [12]杨叶斌,邓雪松,钱洪涛,等.二重钢管防屈曲支撑的性能研究[J].工程抗震与加固改造,2010,32(2):75-80.DOI:10.16226/j.issn.1002-8412.2010.02.015.YANG Yebin,DENG Xuesong,QIAN Hongtao,et al.Study on the performance of double-steel tube buckling-restrained brace[J].Earthquake Resistant Engineering and Retrofitting,2010,32(2):75-80.DOI:10.16226/j.issn.1002-8412.2010.02.015.(in Chinese)
    [13] ZHANG D B,NIE X,PAN P,et al.Experimental study and finite element analysis of a buckling-restrained brace consisting of three steel tubes with slotted holes in the middle tube[J].Journal of Constructional Steel Research,2016,124:1-11.DOI:10.1016/j.jcsr.2016.05.003.
    [14] CHEN W F,SALEEB A F.Constitutive equations for engineering materials,plasticity and modelling[M].New York:Elsevier Science and Technology,1982.
    [15]严红,潘鹏,王元清,等.一字形全钢防屈曲支撑耗能性能试验研究[J].建筑结构学报,2012,33(11):142-149.DOI:10.14006/j.jzjgxb.2012.11.017.YAN Hong,PAN Peng, WANG Yuanqing,et al.Experimental study of buckling-restrained braces with in-line steel core plate encased in double web wide flange steel outer unit[J].Journal of Building Structures,2012,33(11):142-149.DOI:10.14006/j.jzjgxb.2012.11.017.(in Chinese)
    [16] TREMBLAY R,BOLDUC P,NEVILLE R,et al.Seismic testing and performance of buckling restrained bracing systems[J].Canada Journal of Civil Engineering,2006,33(2):183-198.DOI:10.1139/105-103.