膜电解氢自养MBBR反应器深度转化水中高氯酸盐
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Conversion of perchlorate from aqueous solution by hydrogen autotrophic MBBR reactor based on proton-exchange membrane electro-dialysis system
  • 作者:万东锦 ; 牛振华 ; 刘永德 ; 肖书虎
  • 英文作者:WAN Dong-jin;NIU Zhen-hua;LIU Yong-de;XIAO Shu-hu;College of Chemistry, Chemical and Environmental Engineering, Henan University of Technology;State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences;
  • 关键词:膜电解 ; 氢自养 ; 高氯酸盐 ; 活性氯 ; 高通量测序
  • 英文关键词:membrane electro-dialysis;;hydrogen autotrophic;;perchlorate;;active chlorine;;High-throughput sequencing
  • 中文刊名:ZGHJ
  • 英文刊名:China Environmental Science
  • 机构:河南工业大学化学化工与环境学院;环境基准与风险评估国家重点实验室中国环境科学研究院;
  • 出版日期:2018-05-18 17:21
  • 出版单位:中国环境科学
  • 年:2018
  • 期:v.38
  • 基金:国家自然科学基金资助项目(51208179,21277134);; 天津市水质科学与技术重点实验室开放研究基金资助项目(TJKLAST-ZD-2016-03)
  • 语种:中文;
  • 页:ZGHJ201807012
  • 页数:6
  • CN:07
  • ISSN:11-2201/X
  • 分类号:79-84
摘要
建立膜电解电化学氢自养MBBR反应器(移动床生物膜反应器)用于去除水中高氯酸盐,微生物利用阴极电解产生的氢气将高氯酸根还原为氯离子,而后氯离子在阳极发生氧化析氯反应生成活性氯进一步提升出水水质,从而实现高氯酸根的深度转化.利用该反应器研究了高氯酸根的转化过程及相关影响因素,结果表明:进水ClO_4~-浓度为(4.98±0.091)mg/L,维持HRT(水力停留时间)为4h,施加电流由6m A增加至15m A,反应器对高氯酸根的去除率由(39.75±2.09)%增加至(98.99±0.05)%,总出水活性氯浓度由(0.057±0.003)mg/L增加至(0.070±0.002)mg/L,p H值稳定在7.96~8.11,浊度较低为(0.89±0.27)NTU.进一步增大施加电流(20m A),导致阴极室溶液p H值超过9.5,进而影响微生物活性,去除率急剧下降至(30.75±1.19)%.利用扫描电子显微镜(SEM)观察反应器内微生物形貌,发现反应器内微生物均附着于填料表面,以短杆菌为主,增殖缓慢.运用高通量测序技术对接种及运行第24d的微生物群落结构展开分析.结果显示,反应器运行过程中,菌群多样性下降,Thauera菌属为主要的氢自养还原优势菌属,其丰度达到8.25%.
        Based on membrane electro-dialysis system, a novel hydrogen autotrophic MBBR(Moving Bed Biological Reactor) was established to remove perchlorate from aqueous solution. In cathode chamber, bacteria could utilize hydrogen as electron donor to transform perchlorate to chloride ion; in anode chamber, the chloride ion was oxidized to active chlorine to improve effluent quality. The conversion of perchlorate and the influential factors were explored. The hydraulic retention time(HRT) was maintained at 4 h. For 4.98±0.091 mg/L ClO_4~-in feed water, when current intensity increased from 6 to 15 m A, the removal efficiency increased from(39.75±2.09)% to(98.99±0.05)% correspondingly. The active chlorine increased from 0.057±0.003 to 0.070±0.0002 mg/L. The p H of effluent was kept at 7.96 ~ 8.11 and the turbidity was 0.89±0.27 NTU. When further increase current intensity to 20 m A, the p H of cathode chamber exceeded 9.5 thus inhibiting the activity of microorganism and the removal efficiency decreased sharply to(30.75±1.19)%. Besides, scanning electron microscope(SEM) was used to analyze the morphology of bacteria. The dominant bacterial was mainly short rod-shaped, attached to the surface of carriers and proliferated slowly. High-throughput sequencing was applied to analyze bacterial samples after inoculation and 24 d operation. The results indicated that theα-biodiversity was decreased during the operation time and the Thauera was the dominated bacteria with 8.25% abundance.
引文
[1]Logan B E.Peer Reviewed:Assessing the outlook for perchlorate remediation[J].Environmental Science&Technology,2001,35(23):482A-487.
    [2]Bardiya N,Bae J H.Dissimilatory perchlorate reduction:A review[J].Microbiological Research,2011,166(4):237-254.
    [3]London M R,Long S K De,Strahota M D.Autohydrogenotrophic perchlorate reduction kinetics of a microbial consortium in the presence and absence of nitrate[J].Water Research,2011,45(19):6593-6601.
    [4]Dugan N R,Williams DJ,Meyer M.The impact of temperature on the performance of anaerobic biological treatment of perchlorate in drinking water[J].Water Research.,2009,43(7):1867-1878.
    [5]Ju X,Sierra-Alvarez R,Field J.A.Microbial perchlorate reduction with elemental sulfur and other inorganic electron donors[J].Chemosphere,2008,71(1):114-122.
    [6]Wan D,Liu Y,Wang Y.Simultaneous bio-autotrophic reduction of perchlorate and nitrate in a sulfur packed bed reactor:Kinetics and bacterial community structure[J].Water Research,2016:280-292.
    [7]Gao M,Wang Sen,Jin C.Autotrophic perchlorate reduction kinetics of a microbial consortium using elemental sulfur as an electron donor[J].Environmental Science and Pollution Research,2015,22(13):1-10.
    [8]Gao M,Wang S,Ren Y.Simultaneous removal of perchlorate and nitrate in a combined reactor of sulfur autotrophy and electrochemical hydrogen autotrophy[J].Chemical Engineering Journal,2016,284:1008-1016.
    [9]Wan D,Liu H,Qu J.Bio-electrochemical denitrification by a novel protonexchange membrane electrodialysis system-a batch mode study[J].Journal of Chemical Technology&Biotechnology,2010,85(11):1540-1546.
    [10]张健,高孟春,张优,等.膜电解氢自养膜生物反应器还原水中的Cl O4-[J].环境工程学报,2015,9(11):5182-5186.
    [11]Wang Z,Gao M,Zhang Y.Perchlorate reduction by hydrogen autotrophic bacteria in a bioelectrochemical reactor[J].Journal of Environmental Management,2014,142:10-16.
    [12]万东锦,电化学氢-硫自养反硝化工艺研究[D].北京:中国科学院生态环境研究中心,2009.
    [13]Wan D,Liu Y,Niu Z.Perchlorate reduction by hydrogen autotrophic bacteria and microbial community analysis using high-throughput sequencing[J].Biodegradation,2016,27(1):47-57.
    [14]国家环境保护总局《水和废水监测分析方法》编委会.水和废水监测分析方法(第4版)[M]北京:中国环境科学出版社,2002.
    [15]Wang C,Lee Lippincott,Meng X.Kinetics of biological perchlorate reduction and p H effect[J].Journal of Hazardous Materials,2008,153(1/2):663-669.
    [16]Ziv-El M C,Rittmann B E.Systematic evaluation of nitrate and perchlorate bioreduction kinetics in groundwater using a hydrogen-based membrane biofilm reactor[J].Water Research,2009,43(1):173-181.
    [17]Mao Y,Xia Y,Zhang T.Characterization of Thauera-dominated hydrogenoxidizing autotrophic denitrifying microbial communities by using highthroughput sequencing[J].Bioresource Technology,2013,128:703-710.