疏水高疏油铝滤网的制备及其耐腐蚀性能
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Fabrication and Corrosion Resistance of Superhydrophobic and High Oleophobic Aluminum Strainer
  • 作者:于海平 ; 刘长松
  • 英文作者:YU Hai-ping;LIU Chang-song;School of Mechanical Engineering,Qingdao University of Technology;
  • 关键词:铝滤网 ; 疏水 ; 疏油性 ; 耐腐蚀 ; 化学刻蚀 ; 表面改性
  • 英文关键词:aluminum strainers;;hydrophbicity;;oleophobicity;;corrosion resistance;;chemical etching;;surface modification
  • 中文刊名:CLBH
  • 英文刊名:Materials Protection
  • 机构:青岛理工大学机械工程学院;
  • 出版日期:2019-01-15
  • 出版单位:材料保护
  • 年:2019
  • 期:v.52;No.480
  • 语种:中文;
  • 页:CLBH201901019
  • 页数:5
  • CN:01
  • ISSN:42-1215/TB
  • 分类号:90-94
摘要
目前针对抽油烟机铝滤网的黏附油烟及腐蚀性问题等研究较少。利用Fe Cl3溶液刻蚀并沸水处理铝滤网,并采用十七氟癸基三甲氧基硅烷对其表面进行改性,制备出具有超疏水高疏油表面的铝滤网。利用扫描电子显微镜、原子力显微镜、X射线衍射仪、傅里叶变换红外光谱仪对滤网的表面形貌和成分进行了分析,用接触角测量仪对试样的润湿性能进行了测量,用电化学工作站对试样的耐腐蚀性能进行了研究。结果表明,在铝滤网表面制备出了微纳米复合结构,对去离子水、丙三醇、二甘醇、大豆油的接触角分别达151. 00°、148. 00°、143. 00°、140.75°,对去离子水、丙三醇、大豆油的滚动角分别为1°、5°、15°,处理后的铝滤网在自然环境和高温环境中具有优异的稳定性,电化学测试表明其具有更好的耐腐蚀性能,在3.5%Na Cl溶液中的缓蚀率达85.8%。
        Aluminium strainers were etched with Fe Cl3 solution and followed by the sealing in boiling water,and then modified with( heptafluoro-1,1,2,2-tetrahydrodecyl) trimethoxysilane to obtain superhydrophobic and high oleophobic surface. Morphology and composition of the strainer were analyzed with scanning electron microscope,atomic force microscope,X-ray diffractometer and Fourier transform infrared spectroscopy. Surface wettability was measured with contact angle meter. Corrosion resistance of the sample was studied with electrochemical workstation. Results showed that the binary micro-nano rough structure was fabricated on the surface. The contact angles of the samples with water,glycerol,soybean oil was 151.00°,148.00°,143.00° and 140.75°. Rolling angle with deionized water,glycerol,soybean oil was 1°,5° and15°. Besides,the treated aluminium strainer had excellent stability in both natural and high temperature environments and had better corrosion resistance,and the inhibition rate reached 85.8% in 3.5% Na Cl solution.
引文
[1]FENG L,LI S,LI Y,et al.Super-hydrophobic Surfaces:from Natural to Artificial[J].Advanced Materials,2002,14(24):1 857-1 860.
    [2]GAO A,WU Q,WANG D,et al.A Superhydrophobic Surface Templated by Protein Self-assembly and Emerging Application toward Protein Crystallization[J].Advanced Materials,2016,28(3):579-587.
    [3]LIAO R,ZUO Z,GUO C,et al.Fabrication of Superhydrophobic Surface on Aluminum by Continuous Chemical Etching and Its Anti-icing Property[J].Applied Surface Science,2014,317:701-709.
    [4]FLYNN S P,MCKENNA M,MONAGHAN R,et al.AquaArt:A Demonstration of Hydrophilic and Hydrophobic Surfaces Fabricated by Plasma Enhanced Chemical Vapor Deposition[J].Journal of Chemical Education,2016,94(2):221-225.
    [5]HAN D,MOON S Y.Development of Superhydrophobic Surface on Glass Substrate by Multi-step Atmospheric Pressure Plasma Treatment[J].Thin Solid Films,2015,587:34-38.
    [6]WANG P,ZHANG D,QIU R,et al.Super-hydrophobic Metal-complex Film Fabricated Electrochemically on Copper as a Barrier to Corrosive Medium[J].Corrosion Science,2014,83:317-326.
    [7]HU N,DONG X,HE X,et al.Effect of Sealing on the Morphology of Anodized Aluminum Oxide[J].Corrosion Science,2015,97:17-24.
    [8]SALEEMA N,SARKAR D K,GALLANT D,et al.Chemical Nature of Superhydrophobic Aluminum Alloy Surfaces Produced via a One-Step Process Using Fluoroalkyl-Silane in a Base Medium[J].Acs Applied Materials&Interfaces,2011,3(12):4 775-4 781.
    [9]MACDONALD J R,BARSOUKOV E.Impedance Spectroscopy:Theory,Experiment,and Applications[J].History,2005,1(8):1-13.