基于数据分解的高速QPSK并行解方法
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:High-speed QPSK parallel demodulation method based on data decomposition
  • 作者:闫迪 ; 王元钦 ; 吴涛 ; 孙克
  • 英文作者:YAN Di;WANG Yuanqin;WU Tao;SUN Ke;Department of Electronic and Optical Engineering,Space Engineering University;Beijing Aerospace Control Center;
  • 关键词:数据分解 ; 高速正交相移键控 ; 并行解 ; 三维迭代搜索 ; 相位模糊
  • 英文关键词:data decomposition;;high-speed quadrature phase shift keying(QPSK);;parallel demodulation;;three-dimensional iterative search;;phase ambiguity
  • 中文刊名:XTYD
  • 英文刊名:Systems Engineering and Electronics
  • 机构:航天工程大学电子与光学工程系;北京航天飞行控制中心;
  • 出版日期:2018-01-25 11:23
  • 出版单位:系统工程与电子技术
  • 年:2018
  • 期:v.40;No.466
  • 基金:国家自然科学基金(61271265)资助课题
  • 语种:中文;
  • 页:XTYD201807027
  • 页数:8
  • CN:07
  • ISSN:11-2422/TN
  • 分类号:189-196
摘要
使用通用处理进行信号处理具有灵活性、可扩展、易维护等优点,是未来软件无线电发展的趋势之一。提出了一种基于数据分解的高速正交相移键控(quadrature phase shift keying,QPSK)并行解方法,该方法将串行信号流分解为信号块,通过对多个信号块的并行处理,实现高速率QPSK解。为了消除各信号块处理之间的依赖性,在最大似然理论基础上提出了一种基于三维迭代搜索的QPSK开环解算法。为了消除各信号块解结果之间的相位模糊,提出了一种基于数据冗余的模糊一致性方法。仿真结果表明,该并行解方法的信噪比损失在0.1dB以内。在惠普Z820工作站上搭建制解系统,测得解信息速率为1 154.2 Mbps。
        The use of common processors for signal processing has the advantages of flexibility,extensibility,and maintainability,and is one of the trends of future software radio development.This paper proposes a parallel high-speed quadrature phase shift keying(QPSK)demodulation method based on data decomposition.This method decomposes serial signal flow into signal blocks,then high-speed QPSK demodulation is achieved by parallel processing of multiple signal blocks.In order to eliminate the dependence of signal blocks processing,an open loop demodulation algorithm based on three-dimensional iterative search is proposed.In order to eliminate the phase ambiguity between the demodulation of each signal block,an ambiguity consistency method based on data redundancy is proposed.The simulation results show that the signal-to-noise ratio loss of the parallel demodulation method is less than 0.1 dB.The demodulation system is built on the HP Z820 workstation,and the demodulation information rate is 1 154.2 Mbps.
引文
[1]STACKLER M,GLASCOTT A,CHANTIER N.A high speed transmission system using QAM and direct conversion with high bandwidth converters[C]∥Proc.of the Aerospace Conference,2015:1-8.
    [2]RAVISHANKAR C,CORRIGAN J,GOPAL R.High data rate and bandwidth efficient designs for satellite communication systems[C]∥Proc.of the 35th IEEE International Communications Satellite Systems Conference,2017:5417-5420.
    [3]YEM V V.Results on design and implementation of earth station based on software defined radio for geostationary satellite communication systems[J].Systematic Biology,2016,55(1):122-137.
    [4]THUNE N N,HARIDAS S L.4D-8PSK trellis coded modulation for high speed satellite communication[C]∥Proc.of the IEEE International Conference on Advances in Electronics,Communication and Computer Technology,2017:469-473.
    [5]JIA Q,WANG X.Research on high-speed communication technology between DSP and FPGA[C]∥Proc.of the IEEE International Conference on Control and System Graduate Research Colloquium,2017:62-66.
    [6]林长星.2Gbps高速通信解技术及其实现研究[D].北京:清华大学,2012:23-26.LIN C X.Research on demodulation technique and its implementation for 2Gbps high speed communication[D].Beijing:Tsinghua University,2012:23-26.
    [7]梁侠,任海根,徐先超,等.800Mb/s高速解调器的定时恢复算法及实现研究[J].现代电子技术,2007,30(23):1-3.LIANG X,REN H G,XX C,et al.800 Mb/s timing recovery algorithm and implementation for high speed demodulator[J].Modern Electronics Technique,2007,30(23):1-3.
    [8]郭晓峰,郑雪峰,卢满宏,等.高速数传QAM解调器设计及应用[J].遥测遥控,2011,32(3):21-25.GUO X F,ZHENG X F,LU M H,et al.Design and application of high-data-rate QAM demodulator[J].Journal of Telemetry,Tracking and Command,2011,32(3):21-25.
    [9]RHO S,PARK G,KIM J S,et al.A study on optimal scheduling using high-bandwidth memory of knights landing processor[C]∥Proc.of the 2nd IEEE International Workshops on Foundations and Applications of Self Systems,2017:289-294.
    [10]KIRK R O,MUDALIGE G R,REGULY I Z,et al.Achieving performance portability for a heat conduction solver mini-application on modern multi-core systems[C]∥Proc.of the IEEE International Conference on Cluster Computing,2017:834-841.
    [11]KIM J,KANG M,ISLAM M S,et al.A fast and energy-efficient Hamming decoder for software-defined radio using graphics processing units[J].The Journal of Supercomputing,2015,71(7):2454-2472.
    [12]WUBBEN D,ROST P,BARTELT J S,et al.Benefits and impact of cloud computing on 5Gsignal processing:flexible centralization through cloud-RAN[J].IEEE Signal Processing Magazine,2014,31(6):35-44.
    [13]YUAN Z,WANG J,JIANG K,et al.A real-time ISAR imaging structure based on GPU and CPU heterogeneous parallel processing[C]∥Proc.of the 13th IEEE International Conference on Signal Processing,2016:1539-1544.
    [14]TRUONG N B,SUH Y J,YU C.Latency analysis in GNU radio/USRP-based software radio platforms[C]∥Proc.of the IEEE Military Communications Conference,2014:305-310.
    [15]ANJANA C,SUNDARESAN S,ZACHARIA T,et al.An experimental study on channel estimation and synchronization to reduce error rate in OFDM using GNU radio[J].Procedia Computer Science,2015,46:1056-1063.
    [16]LI R,DOU Y,ZHOU J,et al.CuSora:real-time software radio using multi-core graphics processing unit[J].Journal of Systems Architecture,2014,60(3):280-292.
    [17]ALMRADI A,HAMDI K A.DA and NDA SINR estimation in non Gaussian noise[C]∥Proc.of the IEEE International Conference on Wireless Communications and Networking,2015:642-646.
    [18]LI M,ZHAO J,CHEN L.Multi-symbol QPSK partitioning for improved frequency offset estimation of 16-QAM signals[J].IEEE Photonics Technology Letters,2015,27(1):18-21.
    [19]OYAMA T,HOSHIDA T,NAKASHIMA H,et al.Linewidth-tolerant carrier phase estimation for N-PSK based on pilotassisted N/2th-power method[C]∥Proc.of the 42th European Conference on Optical Communication,2016:19-21.
    [20]FIALA P,LINHART R.Symbol synchronization for SDR using apolyphase filterbank based on an FPGA[J].Radio Engineering,2015,24(3):772-782.