采摘机器人恒速抓取环境模拟及其控制器设计
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Constant speed grasping environment simulation and controller design of picking robot
  • 作者:钱志杰 ; 姬伟 ; 陈光宇 ; 赵德安
  • 英文作者:QIAN Zhijie;JI Wei;CHEN Guangyu;ZHAO Dean;School of Electrical Information Engineering, Jiangsu University;
  • 关键词:采摘机器人 ; 末端执行器 ; 阻抗控制 ; Burgers模型 ; 恒速抓取 ; 环境模拟
  • 英文关键词:picking robot;;end effector;;impedance control;;Burgers model;;constant speed grasping;;environment simulation
  • 中文刊名:YZDZ
  • 英文刊名:Journal of Yangzhou University(Natural Science Edition)
  • 机构:江苏大学电气信息工程学院;
  • 出版日期:2019-05-28
  • 出版单位:扬州大学学报(自然科学版)
  • 年:2019
  • 期:v.22;No.86
  • 基金:国家自然科学基金资助项目(31571571);; 江苏省高校优势学科建设工程资助项目(PAPD)
  • 语种:中文;
  • 页:YZDZ201902010
  • 页数:5
  • CN:02
  • ISSN:32-1472/N
  • 分类号:42-45+53
摘要
为实现机器人对苹果的无损采摘,本文通过设计阻抗控制器来提高末端执行器抓取的柔顺性.在夹持器匀速抓取的情况下,用Burgers模型表示苹果黏弹力学行为,利用该模型的力学特性模拟抓取环境,间接减小环境参数不确定性对末端执行器阻抗控制性能的影响.仿真试验结果表明,基于环境模型的阻抗控制器系统输出的接触力能够快速、低超调地跟踪期望力,显示了该模型在苹果抓取控制器设计中的应用前景.
        In order to realize the non-destructive picking of the apple by the robot, the force-based impedance control to improve the flexibility of the end effector is designed in this paper. Aiming at the problem that the impedance control performance is seriously affected by the unknown environmental parameters, when the end-effector grasps the apple at a uniform speed, Burgers model is used to express the viscoelastic mechanical behavior of the apple, then the mechanical characteristic of the designed model is used to simulate the grasping environment. The simulation results show that the contact force output of the impedance controller system based on the environmental model can quickly track the desired force with low overshoot, which demonstrates the application prospect of this model in the design of grasping controller of apple picking robot.
引文
[1] KRONANDER K,BILLARD A.Stability considerations for variable impedance control [J].IEEE T Robot,2016,32(5):1298-1305.
    [2] 王学林,肖永飞,毕淑慧,等.机器人柔性抓取试验平台的设计与抓持力跟踪阻抗控制 [J].农业工程学报,2015,31(1):58-63.
    [3] XU Qingsong.Robust impedance control of a compliant microgripper for high-speed position/force regulation [J].IEEE T Ind Electron,2015,62(2):1201-1209.
    [4] LI Yanan,GE S S.Impedance learning for robots interacting with unknown environments [J].IEEE T Contr Syst T,2014,22(4):1422-1432.
    [5] DUAN Jinjun,GAN Yahui,CHEN Ming,et al.Adaptive variable impedance control for dynamic contact force tracking in uncertain environment [J].Robot Auton Syst,2018,102:54-65.
    [6] JUNG S,HSIA T C,BONITZ R G.Force tracking impedance control of robot manipulators under unknown environment [J].IEEE T Contr Syst T,2004,12(3):474-483.
    [7] LEE K,BUSS M.Force tracking impedance control with variable target stiffness [J].IFAC Proc,2008,41(2):6751-6756.
    [8] 刘继展,白欣欣,李萍萍,等.果实快速夹持复合碰撞模型研究 [J].农业机械学报,2014,45(4):49-54.
    [9] 李正义,曹汇敏.适应环境刚度、阻尼参数未知或变化的机器人阻抗控制方法 [J].中国机械工程,2014,25(12):1581-1585.
    [10] 姬伟,罗大伟,李俊乐,等.果蔬采摘机器人末端执行器的柔顺抓取力控制 [J].农业工程学报,2014,30(9):19-26.
    [11] BOAVENTURA T,BUCHLI J,SEMINI C,et al.Model-based hydraulic impedance control for dynamic robots [J].IEEE T Robot,2015,31(6):1324-1336.
    [12] IZADBAKHSH A,KHORASHADIZADEH S.Robust impedance control of robot manipulators using differential equations as universal approximator [J].Int J Control,2018,91(10):2170-2186.
    [13] JI Wei,QIAN Zhijie,XU Bo,et al.Grasping damage analysis of apple by end-effector in harvesting robot [J].J Food Process Eng,2017,40(6):1-8.