基于机理的磁流变减震器滞回特性魔术公式模型
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:A mechanism-based magic formula model for hysteretic characteristics of magneto rheological damper
  • 作者:薛兵 ; 杜永昌 ; 刘源 ; 王岩 ; 危银涛
  • 英文作者:XUE Bing;DU Yong-chang;LIU Yuan;WANG Yan;WEI Yin-tao;The State Key Laboratory of Automotive Safety and Energy,Tsinghua University;
  • 关键词:减震器 ; 磁流变液 ; 滞回特性 ; 参数辨识 ; 半主动悬架
  • 英文关键词:damper;;MR fluid;;hysteresis characteristic;;parameter identification;;semi-active suspension
  • 中文刊名:ZDGC
  • 英文刊名:Journal of Vibration Engineering
  • 机构:清华大学汽车节能与安全国家重点实验室;
  • 出版日期:2017-10-15
  • 出版单位:振动工程学报
  • 年:2017
  • 期:v.30
  • 基金:国家自然科学基金资助项目(11672148,51275265,51175286)
  • 语种:中文;
  • 页:ZDGC201705010
  • 页数:7
  • CN:05
  • ISSN:32-1349/TB
  • 分类号:82-88
摘要
为了发展一种新的、简单通用的磁流变减震器模型,以适用于半主动悬架的动力学分析与控制。通过对磁流变减震器进行运动学和流变学分析,将减震器的作用力分为剪切项、黏性项、摩擦项、弹性项和惯性项。对于其中表征磁流变液特性的剪切项,使用魔术公式进行描述,变化魔术公式中的系数可以适应不同使用工况,达到精度和适应性的统一。以魔术公式描述剪切项是该文的特色,因此将所提出的模型称为魔术公式模型。通过参数辨识获得各项参数与施加电流的关系,建立起磁流变减震器滞回特性魔术公式模型。该模型形式简单、参数一致且参数物理意义明确,方便用于半主动悬架系统动力学分析与控制器开发。通过试验数据与仿真结果对比,证明模型有较好的精度和适用性。
        A mechanism-based parametric model for hysteretic characteristics of the magneto rheological damper is developed which can accurately capture the inherent hysteresis behavior of MR damper and has a unified form.Thus it is convenient for implementing semiactive control in vehicle application.Besides,parameters in the model have clear physical meanings.Based on kinetics and rheology,the damping force of the magneto rheological damper is divided into five parts,namely shear stress,viscous force,friction,elastic force and inertia force.Then the hysteresis model of the magneto rheological damper is established by identifying the parameters of the five parts and their relations with current excitation.The new model is validated against the experimental data and it's shown that there is a good agreement between them.
引文
[1]关新春,欧进萍,李金海.磁流变液组分选择原则及其机理探讨[J].化学物理学报,2001,14(5):592—596.Guan Xinchun,Ou Jinping,Li Jinhai.The research on the principles of component of magnetorheological fluid selecting and its mechanism[J].Acta Physico-Chimica Sinica,2001,14(5):592—596.
    [2]Ashour O,Rogers C A.MRF:materials,characteristics and devices[J].Intelligent Material Systems and Structure,1996,(7):123—130.
    [3]Carlson J D.Magnetorheological fluid actuators[C].Adaptronics and Smart Structures.Berlin:Springer Verlag Berlin Heideberg,1999:180—195.
    [4]De Vicente J,Ruiz-Lopez J A,Andablo-Reyes E,et al.Squeeze flow magneto-rheology[J].Journal of Rheology,2011,55(4):753—779.
    [5]Phule P P.Synthesis of level magneto rheological fluids[J].MRS Bull.,1998.23:23—25.
    [6]Jeon D,Park C,Park K.Vibration suppression by controlling an MR damper[C].Int.J.Mod.Phys.B,1999,13(14n16):2221—2228.
    [7]Rabinow J.The magnetic fluid clutch[J].AIEE Transactions,1948,67:1308—1315.
    [8]Pinkos A,Shtarkman E,Fitzgerald T.An actively damped passenger car suspension system with low voltage electro-Rhelogical magnetic fluid[C].Proc.Int.Syup.on Advanced Vehicle Control(AVEC),Tsukuba,Japan,1994:311—317.
    [9]Milliken W F,Milliken D L.Race Car Vehicle Dynamics[M].Society of Automotive Engineers,PA,USA,ISBN1560915269,1995.
    [10]Esteki K,Bagchi A,Sedaghati R,et al.Dynamic analysis of electro-and magneto-rheological fluid dampers using duct flow models[J].Smart Mater.Struct,2014,23(23):035016.
    [11]Bouc R.Mathematical model for hysteresis[J].Acta Acustica United with Acustica,1971,24(1):16—25.
    [12]Wen Y K.Method of random vibration of hysteretic systems[J].J.Eng.Mech.,1976,102:249—263.
    [13]Stanway R,Sprostona J L,Stevensa N G.Nonlinear modeling of an electrorheological vibration damper[J].J.Electrost.,1986,20:167—184.
    [14]Dahl P R.Solid friction damping of mechanical vibrations[J].AIAA J.,1976,14:1675—1682.
    [15]Jimenezz R,Alvarez Icaza L.Lu Gre friction model for a magnetorheological damper[J].Structural Control and Health Monitoring,2005,12:91—116.
    [16]Dominguez A,Sedaghati R,Stiharu1 I.A new dynamic hysteresis model for magnetorheological dampers[J].Smart Material&Structures,2006,15:1179—1189.
    [17]Yang G.Large-scale magnetorheological fluid damper for vibration mitigation:modeling,testing and control[D].University of Notre Dame,2001.
    [18]Spencer B F Jr,Dyke S J,Sain M K,et al.Phenomenological model for a magnetorheological damper[J].Eng.Mech.Am.Soc.Civil Eng.,1997,123:230—252.
    [19]Choi S B,Lee S K.A hysteresis model for the field-dependent damping force of a magnetorheological damper[J].Sound Vib.,2001,245:375—383.
    [20]Wang E R,Ma X Q,Rakheja S,et al.Modelling the hysteric characteristics of a magnetorheological fluid damper[J].Automobile Eng.,2003,217:537—550.
    [21]Yao B Z,Yap F F,Chen G,et al.MR-damper and its application for semi-active control of vehicle suspension system[J].Mechatronics,2002,12:963—973.
    [22]Chang C C,Roschke P.Neural network modeling of a magnetorheological damper[J].Intell.Mater.Syst.Struct,1998,9:755—764.
    [23]Wang D H,Liao W H.Modeling and control of magnetorheological fluid dampers using neural networks[J].Smart Mater.Struct.,2004,14:111—126.
    [24]Schurter K C,Roschke P N.Fuzzy modeling of a magnetorheological damper using ANFIS Proc[C].IEEE International Conference on Fuzzy Systems San Antonio,TX USA,2000,1:122—127.
    [25]Kamath G,Hurt M K,Wereley N M.Analysis and testing of Bingham plastic behavior in semi-active electrorheological fluid dampers[J].Smart Mater.Struct.,1996,5:576—590.
    [26]Pang L,Wereley N M.Non-dimensional analysis of semiactive electrorheological and magnetorheological dampers using approximate parallel plate models[J].Smart Mater.Struct.,1998,7:732—743.
    [27]Wereley N M,Lindler J.Analysis and testing of electrorheological bypass dampers[J].Intell.Mater.Syst.Struct.,1999,10:363—376.
    [28]Dimock G,Yoo J H,Wereley N M.Bingham biplastic analysis of ER and MR dampers[J].Intell.Mater.Syst.Struct.,2002,13:549—559.
    [29]Gordaninejad F,Wang X.Flow analysis and modeling of field-controllable,electro and magnetorheological fluid dampers[J].Appl.Mech.,2007,74:13—22.
    [30]Widjaja J,Bijan S,Jianchun L.Electrorheological and magnetorheological duct flow in shear-flow mode using Herschel-Bulkley constitutive model[J].J.Eng.Mech.,2003,129:1459—1465.
    [31]Hong S J,John S,Wereley N M,et al.A unifying perspective on the quasi-steady analysis of magnetorheological dampers[J].J.of Intell.Mater.Syst.&Struct.,2007,19(8):959—976.
    [32]Chen C I,Chen C K,Yang Y T.Unsteady unidirectional flow of Bingham fluid between parallel plates with different given volume flow rate conditions[J].Appl.Math.Modelling,2004,28:697—709.
    [33]Choi S B,Nguyen Q H.Dynamic modeling of an electrorheological damper considering the unsteady behavior of electrorheological fluid flow[J].Smart Mater.Struct.,2009,18:1—9.
    [34]Deana E J,Roland G,Giovanna G.On the numerical simulation of Bingham visco-plastic flow:old and new results[J].Non-Newton Fluid Mech.,2007,142:36—62.
    [35]Weng W Chooi,Olutunde S Oyadiji.Design,modelling and testing of magnetorheological(MR)dampers using analytical flow solutions[J].Computers and Structures,2008,86:473—482.
    [36]Hans B Pacejka.Tyre and Vehicle Dynamics[M].Elsevier's Science and Technology Rights Department in Oxford,UK,2006.