基于吸收式热泵的锅炉烟气余热回收工艺系统性能研究
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Investigation on the system performance of waste heat recovery for boiler flue gas based on absorption heat pump
  • 作者:何梦渊 ; 李永生 ; 潘涛 ; 麻宏强 ; 伍丹丹 ; 李康婷
  • 英文作者:He Mengyuan;Li Yongsheng;Pan Tao;Ma Hongqiang;Wu DANDan;Li Kangting;School of Civil Engineering,Lanzhou University of Technology;Dazhou Natural Gas Purification Co.,Ltd,Sinopec Zhongyuan Oilfield Company;Sinopec Petroleum Engineering Zhongyuan Corporation;Petroleum Engineering Technology Research Institute of Sinopec Zhongyuan Oilfield Company;
  • 关键词:烟气余热回收 ; 溴化锂吸收式热泵 ; 减少CO_2排放量 ; 特性分析
  • 英文关键词:waste heat recovery of flue gas;;lithium bromide absorption heat pump;;CO_2 emission reduction;;basic characteristics analysis
  • 中文刊名:STQG
  • 英文刊名:Chemical Engineering of Oil & Gas
  • 机构:兰州理工大学土木工程学院;中国石化达州天然气净化有限公司;中国石化中原石油工程设计有限公司;中原油田分公司石油工程技术研究院;
  • 出版日期:2019-02-15
  • 出版单位:石油与天然气化工
  • 年:2019
  • 期:v.48;No.249
  • 基金:国家“十三五”科技重大专项“高含硫气田集输净化系统安全高效运行技术课题四”(2016ZX05017-004);; 甘肃省建设厅项目“烟气余热能级提升及深度利用关键技术研究与工程示范”(JK2018-5)
  • 语种:中文;
  • 页:STQG201901021
  • 页数:6
  • CN:01
  • ISSN:51-1210/TE
  • 分类号:120-125
摘要
为提高锅炉烟气余热综合利用效率,降低锅炉热损失,基于溴化锂吸收式热泵原理,开发了锅炉烟气余热回收工艺系统;采用理论分析方法,分析了系统的性能及其动态特性。分析结果表明:具有良好的制热效率并能有效节省锅炉燃煤量,减少CO_2的排放;年节省标准煤量为5.13×10~5 kg,年减少CO_2排放量4.04×10~5 m~3;制热系数随蒸发温度增加略有减小,但变化趋势基本保持不变;热能转换率随循环水温差增大而逐渐升高;回收量标准煤与循环水温差紧密相关,受其他因素影响较小;热能转换率与减少CO_2排放量呈正线性关系。以上结论为锅炉余热回收系统分析计算提供了理论依据。
        In order to improve the comprehensive utilization efficiency of waste heat boiler flue gas and reduce the boiler heat loss,the waste heat recovery system from boiler flue gas was designed based on the lithium bromide absorption heat pump.Furthermore,the performance and dynamic characteristics of the waste heat recovery system was analyzed with theoretical analysis method.The results showed that the system could exhibit high thermal efficiency and effectively save the amount of coal burning in addition to reduce the emission of CO_2.The annual saving of standard coal could reach 5.13×10~5 kg while the annual reduction of CO_2 emission was amount to 4.04×10~5 m~3.The coefficient of performance(COP) would decrease slightly with the increase of evaporation temperature,but the change trend remained basically unchanged.The heat transfer rate was shown to increase with the temperature difference of circulating water.Besides,the recovery of standard coal was closely related to the temperature difference of circulating water,which was less affected by other factors.The
引文
[1] LUO F S. Waste heat recovery from boiler flue gas in dyeing and printing mill[J]. Dyeing & Finishing, 2011, 37(22): 37-38.
    [2] KUMAR B. Thermodynamic analysis of a lithium bromide absorption heat pump using waste heat[J]. International Journal of Applied Engineering Research, 2015, 10(8): 6303-6307.
    [3] LI P. Reformation of boiler flue gas waste heat recovery device for energy saving[J]. Huadian Technology, 2014, 36(1): 74-76.
    [4] 胡秋明, 王景刚. 废热源溴化锂吸收式热泵系统优化研究[J]. 暖通空调, 2015, 45(增刊2):15-16.
    [5] CHEN J C, ANDRESEN B. Optimal analysis of primary performance parameters for an endoreversible absorption heat pump[J]. Heat Recovery Systems and CHP, 1995, 15(8): 723-731.
    [6] MOTORCUA A R, CO?KUN S, KARABULUT ?. The effects of control factors on operating temperatures of a mechanical heat pump in waste heat recovery: evaluation using the Taguchi method[J]. Thermal Science, 2018, 22(1A): 205-222.
    [7] 陈晓. 地表水源热泵系统的运行特性与运行优化研究[D]. 长沙: 湖南大学, 2006.
    [8] KAWASAKI H, KANZAWA A, WATANABE T. Characteristics of chemical heat pump through kinetic analysis of paraldehyde depolymerization[J]. Journal of Chemical Engineering of Japan, 1998, 31(3): 374-380.
    [9] RIFFAT S B, GILLOTT M C. Performance of a novel mechanical ventilation heat recovery heat pump system[J]. Applied Thermal Engineering, 2002, 22(7): 839-845.
    [10] LIU S J, YU W S, CAI Z X, et al. Application analysis on high temperature heat pump for waste heat recovery of marine diesel engines[J]. Journal of Jimei University (Natural Science), 2010, 14(2): 133-136.
    [11] SINGH S, DASGUPTA M S. CO2 heat pump for waste heat recovery and utilization in dairy industry with ammonia based refrigeration[J]. International Journal of Refrigeration, 2017, 78: 108-120.
    [12] VINTHER K, NIELSEN R J, NIELSEN K M, et al. Coefficient of performance optimization of singlE-effect lithium-bromide absorption cycle heat pumps[C]//Proceedings of 2015 IEEE Conference on Control Applications. Sydney, NSW, Australia: IEEE, 2015: 1599-1605.
    [13] 丁辉, 李玉广, 仲召军. 溴化锂吸收式热泵系统的研究[J]. 商品与质量, 2016(49): 234-235.
    [14] 王斌, 马素霞, 马红和, 等. 乏汽吸收式热泵动态特性实验研究[J]. 汽轮机技术, 2017, 59(1): 31-34.
    [15] 周远, 王如竹. 制冷与低温工程[M]. 北京: 中国电力出版社, 2003.