基于热-结构耦合的LNG板翅结构热应力模拟
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Thermodynamics and Thermal Stress Analysis of Plate-fin Structures in LNG Heat Exchanger
  • 作者:麻宏强 ; 蔡伟华 ; 陈杰 ; 姚杨 ; 姜益强
  • 英文作者:MA Hong-qiang;CAI Wei-hua;CHEN Jie;YAO Yang;JIANG Yi-qiang;School of Municipal and Environmental Engineering,Harbin Institute of Technology;School of Energy Science and Engineering,Harbin Institute of Technology;CNOOC Gas and Power Group;
  • 关键词:板翅式换热器 ; 热应力 ; LNG有限元分析 ; ANSYS模拟
  • 英文关键词:plate-fin heat exchanger,thermal stress,LNG,finite element analysis,ANSYS simulation
  • 中文刊名:JZRK
  • 英文刊名:Building Energy & Environment
  • 机构:哈尔滨工业大学市政环境与工程学院;哈尔滨工业大学能源科学与工程学院;中国石油气电集团有限责任公司;
  • 出版日期:2015-05-25
  • 出版单位:建筑热能通风空调
  • 年:2015
  • 期:v.34;No.163
  • 基金:国家高技术研究发展计划(2013AA09A216)
  • 语种:中文;
  • 页:JZRK201503010
  • 页数:5
  • CN:03
  • ISSN:42-1439/TV
  • 分类号:37+41-44
摘要
为保证大型天然气液化(LNG)用板翅式换热器冷箱安全、可靠运行,建立了大型LNG冷箱内板翅式换热器的板翅结构热应力有限元分析数学物理模型,基于热弹性理论采用热-结构直接耦合方法分析了运行参数(流体温度、外载荷以及操作压力)对LNG板翅结构等效热应力的影响规律,模拟结果表明:天然气和混合冷剂之间温差越大板翅结构承受最大等效热应力越大,混合冷剂和天然气温度越低其最大等效热应力越大;外载荷为压力时压力越大其最大等效热应力越小,外载荷为拉力时拉力越大其最大等效热应力越大;此外,天然气侧压力对热应力的影响大于混合冷剂侧压力对其影响,但均表现出增大趋势。上述研究成果将为大型LNG冷箱内板翅式换热器结构以及运行参数设计和安全可靠运行提供重要参考依据。
        In order to ensure the safe and reliable operation of Plate-fin structure in plate-fin heat exchanger which was used to Liquefied Natural Gas(LNG) in a large-scale cold-box. A Finite Element Model(FEM) based on thermal elastic theory was established to simulate influence of operation parameters for the maximum equivalent thermal stress in plate-fin structure. The result shows that the maximum equivalent thermal stress grows steadily with the temperature difference between Natural Gas(NG) and Mixture Refrigerant(MR) and with pull load, decreases with NG or MR temperature and with press load. Addition, the maximum equivalent thermal stress increase with NG or MR pressure,and the influence of NG pressure is greater obviously. These results would provide some constructive instructions in the design and safe operation for plate-fin heat exchanger in large-scale LNG cold box.
引文
[1]Liu Z,R Winterton.A general correlation for saturated and subcooled flow boiling in tubes and annuli,based on a nucleate pool bo-iling equation[J].International Journal of Heat and Mass Transfe-r,1991,34(11):2759-2766.
    [2]V V Kuznetsov,A S Shamirzaev.Boiling heat transfer for freon R21 in rectangular minichannel[J].Heat Transfer Engineering,2007,28(8-9):738-745
    [3]Dong Z.Numerical study of vapor bubble effect on flow and heat transfer in microchannel[J].International Journal of Thermal Sciences,2012,54(0):22-32
    [4]A Feldman,C Marvillet,M Lebouche.Nucleate and convective boiling in plate fin heat exchangers[J].International Journal of Heat and Mass Transfer,2000,43(18):3433-3442
    [5]Peng H,Ling X.Optimal design approach for the plate-fin heat exchangers using neural networks cooperated with genetic algorithms[J].Applied Thermal Engineering,2008,28(5-6):642-650
    [6]N E Ligterink,S V Hageraats-Ponomareva,J F M Velthuis.Mech-anical integrity of PFHE in LNG liquefaction process[A].In:Pro-ceeding of 2nd Trondheim Gas Technology Conference[C].2012.49-55
    [7]F Picard.Modelling and dynamic simulation of thermal stresses in brazed plate-fin heat exchange[A].In:16th European Symposiu-m on Computer Aided Process Engineering and 9th International Symposium on Process Systems Engineering[C].2006.659-664
    [8]Y Mizokami.Development of structural design procedure of plate-fin heat exchanger for HTGR[J].Nuclear Engineering and Desi gn,2013,255:248-262
    [9]A K Aiyangar.The effects of stress level and grain size on the ambient temperature creep deformation behavior of an alpha Ti-1.6 wt pct V alloy[J].Metallurgical and Materials Transactions a-Physical Metallurgy and Materials Science,2005.36A(3):637-644
    [10]M Galli,J Botsis,J Janczak-Rusch.Relief of the residual stresses in ceramic-metal joints by a layered braze structure[J].Advanced Engineering Materials,2006,8(3):197-201
    [11]W C Jiang.The effect of filler metal thickness on residual stress and creep for stainless-steel plate-fin structure[J].International Journal of Pressure Vessels and Piping,2008,85(8):569-574
    [12]Jiang W C.Finite element analysis of creep of stainless steel plate-fin structure[J].Acta Metallurgica Sinica,2007,43(5):539-545
    [13]Xie Q Y,Ling X A.Numerical analysis of residual stress for copp-er base brazed stainless steel plate-fin structure[J].Journal of Materials Engineering and Performance,2010,19(5):611-615
    [14]Jiang W C.A comparison of brazed residual stress in plate-fin structure made of different stainless steel[J].Materials&Design,2009,30(1):23-27
    [15]Jiang W C.Effect of geometric conditions on residual stress of brazed stainless steel plate-fin structure[J].Nuclear Engineering and Design,2008,238(7):1497-1502
    [16]Bao Z Y,D F Fletcher,B S Haynes.Flow boiling heat transfer of Freon R11 and HCFC123 in narrow passages[J].International Journal of Heat and Mass Transfer,2000,43(18):3347-3358
    [17]Jiang W C,Gong J M,Tu S T.A new cooling method for vacuum brazing of a stainless steel plate-fin structure[J].Materials&Design,2010,31(1):648-653
    [18]B Watel.Review of saturated flow boiling in small passages of compact heat-exchangers[J].International Journal of Thermal Sciences,2003,42(2):107-140
    [19]K A Khan.Coupled heat conduction and thermal stress analyses in particulate composites[J].Mechanics of Materials,2011,43(10):608-625
    [20]Zhao N.Finite element analysis of pressure on 2024 aluminum alloy created during restricting expansion-deformation heat-treatment[J].Transactions of Nonferrous Metals Society of China,2012,22(9):2226-2232