比例与非比例加载下30CrMnSiA钢多轴高周疲劳失效分析
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Analysis on multiaxial high-cycle fatigue failure of 30CrMnSiA steel under proportional and non-proportional loading
  • 作者:亓新新 ; 张婷 ; 时新红 ; 张建宇 ; 费斌军
  • 英文作者:QI Xinxin;ZHANG Ting;SHI Xinhong;ZHANG Jianyu;FEI Binjun;School of Aeronautic Science and Engineering,Beijing University of Aeronautics and Astronautics;School of Astronautics,Beijing University of Aeronautics and Astronautics;College of Aerospace Engineering,Chongqing University;
  • 关键词:多轴疲劳 ; 30CrMnSiA钢 ; 应力幅比 ; 相位差 ; 裂纹扩展路径 ; 断口特征
  • 英文关键词:multiaxial fatigue;;30CrMnSiA steel;;stress amplitude ratio;;phase angle;;crack path;;fracture characteristics
  • 中文刊名:HKDI
  • 英文刊名:Journal of Aerospace Power
  • 机构:北京航空航天大学航空科学与工程学院;北京航空航天大学宇航学院;重庆大学航空航天学院;
  • 出版日期:2019-06-12 08:44
  • 出版单位:航空动力学报
  • 年:2019
  • 期:v.34
  • 基金:国家自然科学基金(11172021)
  • 语种:中文;
  • 页:HKDI201906007
  • 页数:9
  • CN:06
  • ISSN:11-2297/V
  • 分类号:60-68
摘要
为了分析比例与非比例加载下,30CrMnSiA钢的多轴高周疲劳的失效规律。通过对30CrMnSiA钢材料开展比例与非比例(δ=90°)加载下的多轴高周疲劳试验,研究了应力幅比和相位差对疲劳寿命、断口特征及裂纹起裂角度的影响。试验结果表明,对于比例与非比例加载,随着应力幅比的增大,多轴疲劳寿命逐渐增加。对疲劳断口分析发现,裂纹萌生于试件表面,断口有明显的疲劳源区、扩展区和瞬断区,不同加载路径下的试件断口形式有明显差异。通过对起裂角度的分析发现,应力幅比大于0.25时表面裂纹有明显的第Ⅰ阶段向第Ⅱ阶段的转变,且第Ⅰ阶段沿着接近最大剪应力幅值平面方向扩展,第Ⅱ阶段沿着接近最大正应力平面方向扩展。此外,对典型试件的疲劳断口及表面扩展路径进行了分析,研究表明多轴疲劳试验试件裂纹的特征比值在0.3~0.5之间,且裂纹沿深度方向扩展至300μm时占总寿命的85%以上。
        To analyze the failure law of high cycle multiaxial fatigue of 30 CrMnSiA steel under proportional and non-proportional loading,multiaxial fatigue tests were carried out using 30 CrMnSiA steel specimens under proportional and non-proportional(δ=90°)loading.The effects of stress amplitude ratio and phase angle on the fatigue life,fracture characteristics and crack initiation angle were analyzed.The results showed that the multiaxial fatigue life increased with the growing stress amplitude ratio for both proportional and non-proportional loadings.The fatigue source region,propagation region and final fracture region can be clearly observed.The transition of crack from stage Ⅰ to stage Ⅱ was observed when stress amplitude ratio was greater than 0.25 through analysis of crack initiation angles.And the stage Ⅰ propagation of the main crack was approximately along the maximum shear stress amplitude plane.StageⅡ propagation of the main crack was approximately along the maximum normal stress plane.In addition,the crack aspect ratios of multiaxial fatigue test specimen were between 0.3 and 0.5,and the fatigue life corresponding to a 300μm depth occupied more than 85%of the total fatigue life through analysis of fracture and surface crack path.
引文
[1]KAROLCZUK A,MACHA E.A review of critical plane orientations in multiaxial fatigue failure criteria of metallic materials[J].International Journal of Fatigue,2005,134(3):267-304.
    [2]WANG C,SHANG D G,WANG X W.A new multiaxial high-cycle fatigue criterion based on the critical plane for ductile and brittle materials[J].Journal of Materials Engineering and Performance,2014,24(2):816-824.
    [3]KAROLCZUK A,KLUGER K,?AGODA T.A correction in the algorithm of fatigue life calculation based on the critical plane approach[J].International Journal of Fatigue,2016,83(2):174-183.
    [4]OHKAWA I,TAKAHASHI H,MORIWAKI M.A study on fatigue crack growth under out-of-phase combined loadings[J].Fatigue and Fracture of Engineering Materials and Structures,1997,20:929-940.
    [5]VU Q H,NADOT Y,HALM D.High cycle fatigue crack paths in C35steel under complex loading[R].Vicenza,Italy:International Conference of Crack Paths,2009.
    [6]MILLER K J,IBRAHIM M F E.Damage accumulation during initiation and short crack growth regimes[J].Fatigue and Fracture of Engineering Materials and Structures,1981,4(3):263-277.
    [7]HUA C T,SOCIE D F.Fatigue damage in 1045steel under constant amplitude biaxial loading[J].Fatigue and Fracture of Engineering Materials and Structures,1985,8(2):101-114.
    [8]VERREMAN Y,GUO H.High-cycle fatigue mechanisms in 1045steel under non-proportional axial-torsional loading[J].Fatigue and Fracture of Engineering Materials and Structures,2007,30(10):932-946.
    [9]CAMPAGNOLO A,MENEGHETTI G,BERTO F.Calibration of the potential drop method by means of electric FE analyses and experimental validation for a range of crack shapes[J].Fatigue and Fracture of Engineering Materials and Structures,2018,41(11):2272-2287.
    [10]MENEGHETTI G,CAMPAGNOLO A,BERTO F.Notched Ti-6Al-4V titanium bars under multiaxial fatigue:Synthesis of crack initiation life based on the averaged strain energy density[J].Theoretical and Applied Fracture Mechanics,2018,96:509-533.
    [11]陈亚军,王先超,王付胜.不同应力幅比加载下2A12铝合金的多轴疲劳性能[J].材料工程,2017,45(9):136-142.CHEN Yajun,WANG Xianchao,WANG Fusheng.Multiaxial fatigue properties of 2A12aluminum alloy under different stress amplitude ratio loading[J].Journal of Material Engineering,2017,45(9):136-142.(in Chinese)
    [12]陈亚军,王先超,王付胜.2A12铝合金的多轴加载疲劳行为[J].材料工程,2017,45(8):68-75.CHEN Yajun,WANG Xianchao,WANG Fusheng.Fatigue behavior of 2A12aluminum alloy under multiaxial loading[J].Journal of Material Engineering,2017,45(8):68-75.(in Chinese)
    [13]陈亚军,王先超,王付胜.相位角加载条件下2A12铝合金的多轴疲劳失效行为[J].材料导报,2017,31(14):147-152.CHEN Yajun,WANG Xianchao,WANG Fusheng.Failure behavior of multiaxial fatigue for 2A12aluminum alloy subject to different angle loading conditions[J].Materials Review,2017,31(14):147-152.(in Chinese)
    [14]YANG F P,YUAN X G,KUANG Z B.Influence of loading path on fatigue crack growth under multiaxial loading condition[J].Fatigue and Fracture of Engineering Materials and Structures,2012,35(5):425-432.
    [15]NAKAMURA H,TAKANASHI M,ITOH T.Fatigue crack initiation and growth behavior of Ti-6Al-4Vunder nonproportional multiaxial loading[J].International Journal of Fatigue,2011,33(7):842-848.
    [16]ZHANG J,SHI X,BAO R.Tension-torsion high-cycle fatigue failure analysis of 2A12-T4aluminum alloy with different stress ratios[J].International Journal of Fatigue,2011,33(8):1066-1074.
    [17]AGBESSI K,SAINTIER N,PALIN-LUC T.Microstructure based study of the crack initiation mechanisms in pure copper under high cycle multiaxial fatigue loading conditions[J].Procedia Structural Integrity,2016,2:3210-3217.
    [18]刘天奇,时新红,张建宇.平均应力对30CrMnSiA钢多轴疲劳失效的影响[J].航空动力学报,2018,33(12):2972-2980.LIU Tianqi,SHI Xinhong,ZHANG Jianyu.Effect of mean stress on multiaxial fatigue failure of 30CrMnSiA steel[J].Journal of Aerospace Power,2018,33(12):2972-2980.(in Chinese)
    [19]时新红,鲍蕊,张建宇.多轴高周疲劳失效准则的对比分析[J].航空动力学报,2008,23(11):2007-2015.SHI Xinhong,BAO Rui,ZHANG Jianyu.Comparative study of multiaxial high-cycle fatigue prediction criteria[J].Journal of Aerospace Power,2008,23(11):2007-2015.(in Chinese)