桩芯介质对管式能量桩换热效率的影响
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Influence of Pile Core Medium on Heat Transfer Efficiency of Tubular Energy Pile
  • 作者:刘汉龙 ; 黄旭 ; 孔纲强 ; 彭怀风 ; 车平
  • 英文作者:LIU Han-long;HUANG Xu;KONG Gang-qiang;PENG Huai-feng;CHE Ping;Key Laboratory of Geomechanics and Embankment Engineering, Ministry of Education, Hohai University;Key Laboratory of New Technology for Construction of Cities in Mountain Area, Chongqing University;Eastern China Geological & Mining Organization for Non-Ferrous Metals in Jiangsu Province;
  • 关键词:道路工程 ; 换热效率 ; 模型试验 ; 数值模拟 ; 管式能量桩
  • 英文关键词:road engineering;;heat transfer efficiency;;model test;;numerical simulation;;tubular energy pile
  • 中文刊名:ZGGL
  • 英文刊名:China Journal of Highway and Transport
  • 机构:河海大学岩土力学与堤坝工程教育部重点实验室;重庆大学山地城镇建设与新技术教育部重点实验室;江苏有色金属华东地质勘查局;
  • 出版日期:2019-01-15
  • 出版单位:中国公路学报
  • 年:2019
  • 期:v.32;No.185
  • 基金:国家自然科学基金项目(51378178);; 教育部-香港科技局博士点联合基金项目(20130094140001,M-HKUST603/13,GRF617213);; 江苏省普通高校研究生科研创新计划项目(KYZZ15_0145)
  • 语种:中文;
  • 页:ZGGL201901002
  • 页数:11
  • CN:01
  • ISSN:61-1313/U
  • 分类号:5-15
摘要
管桩在中国大部分地区已经取得了较多的应用,现阶段能量桩的发展已不再局限于传统桩基础中,管桩桩基中能量桩技术也逐渐得到应用。管桩式能量桩的传热模式有别于传统能量桩,可利用其内壁空腔,提高换热效率,不同桩芯介质条件下,管桩式能量桩的换热效率有较为显著的区别。采用室内模型试验和数值模拟的方法,测得不同桩芯介质情况下管式能量桩及其桩周土体温度场的变化规律,通过控制循环导管内导热液体的流速改变能量桩的循环模式,续而探讨分析不同桩芯介质及循环流速下管式能量桩在实际运行过程中的换热效率。研究结果表明:试验条件下,桩芯介质为水的管式能量桩换热效率要高于桩芯介质为干砂的管式能量桩,且其在循环稳定时的桩身温度变化值和桩周土体的温度变化值也高于桩芯介质为干砂的情况,表明不同桩芯介质对管式能量桩的桩土温度场有显著影响,进一步验证了可通过改变管式能量桩内壁空腔的介质来提高其换热效率的可行性;同时,结合数值模拟结果发现流速的增大可以提高能量桩的换热效率,但是影响较小,而提高能量桩运行时的流速需要耗费额外的能源,表明在实际工程应用中通过提高流速的方法增加能量桩的换热效率具有较低的经济性,实际运行中的能量桩其流速满足建筑制冷供暖需求即可。
        In the past decades, tubular piles have been used in most regions in China. However, presently, the energy pile, which overcomes the limitations of traditional piles, is being used widely. Tubular energy piles have gradually been developed. The heat exchange model of a tubular energy pile is different from the traditional energy pile, and the cavity of a tubular pile could be used to improve the heat exchange efficiency. The heat exchange efficiency varies under different conditions of inner media. Based on model tests and numerical simulations, the temperatures of a tubular energy pile and the surrounding soil were measured to study the heat exchange rate of tubular energy piles with different inner media. The velocity of cyclic water was controlled to study the effect of the working model on the heat exchange rate. The results show that the heat exchange efficiency with water as the inner medium is higher than that with sandy soil as the inner medium; further, the stable temperatures of the pile and surrounding soil with water as the inner medium are higher than those in the other case. This shows that the inner medium considerably influences the temperature field of tubular energy piles. Further, it is feasible to improve the heat exchange rate of energy piles by changing the inner medium. Simultaneously, the analysis of the results of numerical simulations shows that the velocity has a positive effect on the heat exchange rate; however, this effect is not pronounced. Moreover, a considerable amount of energy is required to improve the velocity of the cyclic water during the processing of energy piles, and thus, the velocity of cyclic water has lower economic benefits in improving the heat exchange rate of energy piles.
引文
[1] BOURNE-WEBB P J, AMATYA B, SOGA K, et al. Energy Pile Test at Lambeth College, London: Geotechnical and Thermodynamic Aspects of Pile Response to Heat Cycles [J]. Géotechnique, 2009, 59 (3): 237-248.
    [2] BRABDL H. Energy Foundations and Other Thermo-active Ground Structures [J]. Géotechnique, 2006, 56 (2): 81-122.
    [3] CEKEREVAC C, LALOUI L. Experimental Study of Thermal Effects on the Mechanical Behaviour of a Clay [J]. International Journal for Numerical and Analytical Methods in Geomechanics, 2004, 28: 209-228.
    [4] 桂树强,程晓辉.能源桩换热过程中结构响应原位试验研究[J].岩土工程学报,2014,36(6):1087-1094. GUI Shu-qiang, CHENG Xiao-hui. In-situ Test for Structural Responses of Energy Pile to Heat Exchanging Process [J]. Chinese Journal of Geotechnical Engineering, 2014, 36 (6): 1087-1094.
    [5] 路宏伟,蒋刚,王昊,等.摩擦型能源桩荷载-温度现场联合测试与承载性状分析[J].岩土工程学报,2017,39(2):334-342. LU Hong-wei, JIANG Gang, WANG Hao, et al. In-situ Tests and Analysis of Mechanical-thermo Bearing Characteristic of Drilled Friction Geothermal Energy Pile [J]. Chinese Journal of Geotechnical Engineering, 2017, 39 (2): 334-342.
    [6] 李翔宇,郭红仙,程晓辉.能源桩温度分布的试验与数值研究[J].土木工程学报,2016,49(4):102-110. LI Xiang-yu, GUO Hong-xian, CHENG Xiao-hui. Experimental and Numerical Study on Temperature Distribution in Energy Piles [J]. China Civil Engineering Journal, 2016, 49 (4): 102-110.
    [7] JALAUDDI N, AKIO M, KOUTARO T, et al. Experimental Study of Several Types of Ground Heat Exchanger Using a Steel Pile Foundation [J]. Renewable Energy, 2011, 36: 764-771.
    [8] GAO J, ZHANG X, LIU J, et al. Thermal Performance and Ground Temperature of Vertical Pile-foundation Heat Exchangers: A Case Study [J]. Applied Thermal Engineering, 2008, 28: 2295-2304.
    [9] LI M, LAI A C K. New Temperature Response Functions (G Functions) for Pile and Borehole Ground Heat Exchangers Based on Composite-medium Line-source Theory [J]. Energy, 2012, 38: 255-263.
    [10] LI M, LAI A C K. Analytical Solution to Heat Conduction in Finite Hollow Composite Cylinders with a General Boundary Condition [J].International Journal of Heat and Mass Transfer, 2013, 60: 549-556.
    [11] GASHTI E H N, UOTINEN V M, KUJALA K. Numerical Modelling of Thermal Regimes in Steel Energy Pile Foundations: A Case Study [J]. Energy and Buildings, 2014, 69: 165-174.
    [12] SURYATRIYASTUTI M E, MROUEH H, BURLON S. A Load Transfer Approach for Studying the Cyclic Behavior of Thermo-active Piles [J]. Computers and Geotechnics, 2014, 55: 378-391.
    [13] 刘汉龙,王成龙,孔纲强,等.U型、W型和螺旋型埋管形式能量桩热力学特性对比模型试验[J].岩土力学,2016,37(增1):441-447. LIU Han-long, WANG Cheng-long, KONG Gang-qiang, et al. Comparative Model Test on Thermo-mechanical Characteristics of Energy Pile with U-shape, W-shape and Spiral-shape [J]. Rock and Soil Mechanics, 2016, 37 (S1): 441-447.
    [14] ZHOU H, KONG G Q, LIU H L, et al. Similarity Solution for Cavity Expansion in Thermoplastic Soil [J]. International Journal for Numerical and Analytical Methods in Geomechanics, 2018, 42 (2): 274-294.
    [15] LI C H, KONG G Q, LIU H L. Experimental on Red Clay-concrete Interface Influenced by Cycle Temperatures [J]. Canadian Geotechnical Journal, 2019, 56 (1): 126-134.
    [16] KONG G Q, WU D, LIU H L, et al. Performance of a Geothermal Energy Deicing System for Bridge Deck Using a Pile Heat Exchanger [J]. International Journal of Energy Research, 2019, 43 (1): 596-603.
    [17] 黄旭,孔纲强,刘汉龙,等.循环温度场作用下PCC能量桩热力学特性模型试验[J]. 岩土力学,2015,36(3):667-673. HUANG Xu, KONG Gang-qiang, LIU Han-long et al. Experimental on Thermal-mechanical Characteristics of PCC Energy Pile Under Circular Temperature Field [J]. Rock and Soil Mechanics, 2015, 36 (3): 667-673.
    [18] 刘汉龙,孔纲强,吴宏伟.能量桩工程应用研究进展及PCC能量桩技术开发[J].岩土工程学报,2014,36(1):176-181. LIU Han-long, KONG Gang-qiang, NG C W W. Review of the Applications of Energy Pile and Development of PCC Energy Pile Technical [J]. Chinese Journal of Geotechnical Engineering, 2014, 36 (1):176-181.
    [19] 陈单雄,陈守义.砂土热导率的实验研究[J].岩土工程学报,1994,16(5):47-53. CHEN Shan-xiong, CHEN Shou-yi. Experimental Study on Thermal Conductivity of Sand Soil [J]. Chinese Journal of Geotechnical Engineering, 1994, 16 (5): 47-53.