内蒙胜利褐煤生物产气前后微生物群落变化
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Variation of microbial community before and after biogas production with Shengli lignite in Inner Mongolia
  • 作者:赵晗 ; 何环 ; 王江泽 ; 谭凯丽 ; 赵娜 ; 任恒星
  • 英文作者:ZHAO Han;HE Huan;WANG Jiangze;TAN Kaili;ZHAO Na;REN Hengxing;State Key Laboratory of Coal and CBM Co-mining, Shanxi Jincheng Anthracite Mining Group Co.,Ltd.;Yi'an Lanyan Coal and Coal-bed Methane Simultaneous Extraction Technology Co.,Ltd.;School of Chemical Engineering and Technology,China University of Mining and Technology;Key Laboratory of Coal Processing and Efficient and Clean Utilization of Ministry of Education,China University of Mining and Technology;
  • 关键词:褐煤 ; 生物产气 ; 群落变化 ; 高通量测序
  • 英文关键词:lignite;;biogenic gas;;microbial flora succession;;high-throughput sequencing
  • 中文刊名:MTXB
  • 英文刊名:Journal of China Coal Society
  • 机构:山西晋城无烟煤矿业集团有限责任公司煤与煤层气共采国家重点实验室;易安蓝焰煤与煤层气共采技术有限责任公司;中国矿业大学化工学院;中国矿业大学煤炭加工与高效洁净利用教育部重点实验室;
  • 出版日期:2019-04-15
  • 出版单位:煤炭学报
  • 年:2019
  • 期:v.44;No.295
  • 基金:山西省煤层气联合研究基金资助项目(2016012009);; 中央高校基本科研业务费专项资金资助项目(2017XKQY037)
  • 语种:中文;
  • 页:MTXB201904029
  • 页数:8
  • CN:04
  • ISSN:11-2190/TD
  • 分类号:256-263
摘要
为研究微生物群落在褐煤生物产气过程中的作用以及产气前后煤样性质的变化。以内蒙古胜利褐煤为产气底物,寺河矿区煤层气井排出水中富集产气微生物为出发菌群,在实验室开展褐煤生物产气实验,采用Illumina高通量测序平台分析产气前后微生物群落变化,并利用气相色谱、扫描电子显微镜等手段对褐煤产甲烷量和产气前后煤样物化性质及其煤表面的菌体形貌进行分析。结果表明,内蒙胜利褐煤可以被所富集得到的菌群利用并产生甲烷,产气周期为49 d,期间累计产甲烷量为83. 1 mL,净产甲烷率为7.84 mL/g煤。褐煤生物产气微生物样本中细菌群落多样性丰富,主要优势菌门为厚壁菌门(Firmicutes)、变形菌门(Proteobacteria)、WWE1、拟杆菌门(Bacteroidetes)、互养菌门(Synergistetes)和少量的脱铁杆菌门(Deferribacteres)。原始微生物群落结构多样性较高,经褐煤和基本培养基培养产气后,群落多样性降低。在微生物属水平上菌群结构变化较大,其中W22,Proteiniclasticum,VadinCA02,Tissierella_soehngenia,Clostridium, Dasulfovibrio等菌属在产气过程中发挥重要功能。内蒙胜利褐煤挥发分较高,富氢、富氧,煤表面结构松散有明显裂隙,有利于微生物附着降解,适宜进行生物产气试验。褐煤经微生物作用产气后,水分、灰分、挥发分均降低,固定碳百分比升高,H/C升高,S元素比例下降,利用扫描电镜观察到产气体系中煤表面附着大量短杆状和球状微生物,并存在类似微生物纳米导线的结构。
        In order to study the role of microbial community in lignite biogas production process and the change of coal sample properties before and after gas production, the lignite obtained from Shengli in Inner Mongolia was used as the substrate for gas production,and the enriched anaerobic flora in Sihe mining area was used as the starting bacterial community. In the laboratory scale,the lignite biogas production was conducted. The microbial community changes before and after gas production were analyzed by Illumina high-throughput sequencing platform. Gas chromatography,scanning electron microscopy, etc. were used to analyze the methane production of lignite and the physicochemical properties of coal samples before and after gas production and the morphology of the coal surface. The results showed that Inner Mongolia Shengli lignite could be utilized by the enriched flora and produce methane with a biogas production cycle of 49 days, and the cumulative methane production was 83.1 mL. The net methane production rate was7.84 mL/g coal. The diversity of bacterial communities in the biomass biogenic samples of lignite was abundant. The main dominant bacteria at phylum level were Firmicutes,Proteobacteria,WWE1,Bacteroidetes,Synergistetes and Deferribacteres. The initial microbial flora had high diversity, however, the microbial diversity decreased after the biogas generation with lignite and basic medium. The microbial structure changed obviously at genus level, and the dominant bacteria W22, Proteiniclasticum, VadinCA02, Tissierella soehngenia, Clostridium and Desulfovibrio played important roles in the biogas generation. Inner Mongolia Shengli lignite had higher volatile matter,rich in hydrogen and oxygen, and the surface structure of coal was loose, with obvious cracks, which was beneficial to microbial adhesion and degradation,and was suitable for biogas production. After the biogas production,lignite's volatile content,water and ash,the proportion of S and O elements decreased, however the percentage of fixed carbon and the H/C increased. The SEM results showed that a large number of short rod-like and spherical microbes absorbed onto the surface of coal,and also had similar microorganism nanowire structure.
引文
[1]王爱宽.褐煤本源菌生气特征及其作用机理[D].徐州:中国矿业大学,2010.WANG Aikuan. Liveness characteristics and mechanism of lignite indigenous bacteria[D]. Xuzhou:China University of Mining and Technology,2010.
    [2] STRAPOC D,MASTALERZ M,DAWSON K,et al. Biogeochemistry ofmicrobial coal-bed methane[J]. Annual Review of Earth and Planetary Sciences,2011,39:617-656.
    [3] AHMED M,SMITH J W. Biogenic methane generation in the degradation of eastern Australian Permian coals[J]. Organic Geochemistry,2001,32(6):809-816.
    [4] ROBBINS S J,EVANS P N,ESTERLE J S,et al. The effect of coal rank on biogenic methane potential and microbial composition[J].International Journal of Coal Geology,2016,154-155:205-212.
    [5] TANG Y Q,JI P, LAI G L, et al. Diverse microbial community from the coal beds of the Ordos Basin, China[J]. International Journal of Coal Geology,2012,90-91:21-33.
    [6]王保玉,陈林勇,邰超,等.外源菌群煤生物气化初步研究:菌群结构,煤种及煤孔(裂)隙[J].煤炭学报,2014,39(9):1797-1801.WANG Baoyu,CHEN Linyong,TAI Chao,et al. A preliminary study of biological coal gasification by exogenous bacteria:Microbiome composition,coal type, pore and seam fracture[J]. Journal ofChina Coal Society,2014,39(9):1797-1801.
    [7] HE H,HAN Y X,JIN D C,et al. Microbial consortium in a non-production biogas coal mine of eastern China and its methane generation from lignite[J]. Energy Sources, Part A:Recovery, Utilization, and Environmental Effects,2016,38(10):1377-1384.
    [8] DARIUSZ S, FLYNN W P, COURTNEY T,et al. Methane-producing microbial community in a coal bed of the Illinois Basin[J].Applied and Environmental Microbiology,2008,74(8):2424-2432
    [9] INAGAKI F,HINRICHS K U,KUBO Y,et al. Exploring deep microbial life in coal-bearing sediment down to~2. 5 km below the ocean floor[J]. Science,2015,349(6246):420-424.
    [10] MAYUMI D,MOCHIMARU H,TAMAKI H,et al. Methane production from coal by a single methanogen[J]. Science, 2016,354(6309):222-225.
    [11] DAWSON K S,STRAPOC D,HUIZINGA B,et al. Quantitative fluorescence in situ hybridization analysis of microbial consortia from a biogenic gas field in Alaska's Cook inlet basin[J]. Applied and Environmental Microbiology,2012,78(10):3599-3605.
    [12] DONALD A K, ROMEO M F, CHRISTOPHE V. Molecular sequences derived from Paleocene Fort Union Formation coals vs.Associated produced waters:Implications for CBM regeneration[J]. International Journal of Coal Geology,2008,76:3-13.
    [13] GUO H G, YU Z S, ZHANG H X, et al. Pyrosequencing reveals the dominance of methylotrophic methanogenesis in a coal bed methane reservoir associated with Eastern Ordos Basin in China[J]. International Journal of Coal Geology,2012,93:56-61.
    [14] VICK S H W,TETU S G,SHERWOOD N,et al. Revealing colonisation and biofilm formation of an adherent coal seam associated microbial community on a coal surface[J]. International Journal of Coal Geology,2016,160-161:42-50.
    [15]陈林勇,王保玉,邰超,等.无烟煤微生物成气中间代谢产物组成及其转化[J].煤炭学报,2016,41(9):2305-2311.CHEN Linyong, WANG Baoyu, TAI Chao, et al. Composition and conversion of intermediate products in the process of anthracite gasification by microorganism[J]. Journal of China Coal Society,2016,41(9):2305-2311.
    [16]谢家仪,董光军,刘振英.扫描电镜的微生物样品制备方法[J].电子显微学报,2005,24(4):440.XIE Jiayi, DONG Guangjun, LIU Zhenying. Microbial sample preparation for SEM[J]. Journal of Chinese Electron Microscopy Society,2005,24(4):440.
    [17] COLOSIMO F,THOMAS R,LLOYD J R,et al. Biogenic methane in shale gas and coal bed methane:A review of current knowledge and gaps[J]. International Journal of Coal Geology, 2016, 165:106-120.
    [18] HARNS C, SCHLEICHER A, COLLINS M D,et al. Tissierella creatinophila sp. nov., a gram-positive, anaerobic, non-sporeforming, creatinine-fermenting organism[J]. International Journal of Systematic Bacteriology, 1998,48:983-993.
    [19] IMACHI H,SAKAI S,KUBOTA T,et al. Sedimentibacter acidaminivorans sp. nov., an anaerobic, amino acids-utilizing bacterium isolated from marine subsurface sediment[J]. International Journal of Systematic&Evolutionary Microbiology, 2016,66(3):1293-1300.
    [20]韩睿,陈来生,李莉,等.PCR-DGGE研究青海农村户用沼气池微生物群落结构[J].中国环境科学,2015,35(6):1794-1804.HAN Rui,CHEN Laisheng,LI Li,et al. PCR-DGGE study on microbial community structure of household biogas digesters in Qinghai rural areas[J]. China Environmental Science, 2015,35(6):1794-1804.
    [21] ZHANG C,LIU X X. Syntrophomonas curvata sp. nov. an anaerobe that degrades fatty acids in co-culture with methanogens[J]. International Journal of Systematic&Evolutionary Microbiology, 2004,54(3):969-973.
    [22] LIMAM R D,CHOUARI R,MAZEAS L,et al. Members of the uncultured bacterial candidate division WWE1 are implicated in anaerobic digestion of cellulose[J]. Microbiologyopen, 2014,3(2):157-167.
    [23]麻婷婷,承磊,郑珍珍,等.不同pH缓冲液对由乙酸产甲烷菌群结构的影响[J].微生物学报,2014,54(12):1453-1461.MA Tingting,CHENG Lei,ZHENG Zhenzhen,et al. Effect of different pH buffers on the structure of methanogenic methanotrophs in acetic acid[J]. Chinese Journal of Microbiology,2014,54(12):1453-1461.
    [24] BERLENDIS S,LASCOURREGES J F,SCHRAAUWERS B,et al.Anaerobic biodegradation of BTEX by original bacterial communities from an underground gas storage aquifer[J]. Environmental Science&Technology,2010,44(9):3621-3628.
    [25]王丽丽.可降解苯酚的高效产电菌株的分离筛选及生物学特性研究[D].哈尔滨:哈尔滨理工大学,2017.WANG Lili. Isolation,screening and biological characteristics of highly producing strain of degradable phenol[D]. Harbin:Harbin University of Science and Technology,2017.
    [26]尹亚琳,高崇洋,赵阳国,等.好氧-厌氧混合污泥启动微生物燃料电池产电性能及微生物群落动态特征[J].微生物学报,2014,54(12):1471-1480.YIN Yalin,GAO Chongyang,ZHAO Yangguo,et al. Electricity generation and dynamics characteristics of microbial community of microbial fuel cells started up with mixture of aerobic/anaerobic sludge[J]. Acta Microbiologica Sinica, 2014,54(12):1471-1480.
    [27]宋燕莉.赵庄矿区煤层水产气菌群计数和物种分类分析[J].能源与节能,2016(11):51-53.SONG Yanli. Counting and species classification analysis of aquatic gas-producing bacteria in coal seam of Zhaozhuang Mining Area[J]. Energy and Energy Conservation,2016(11):51-53.
    [28]杨丽平,郑小红,曾国驱,等.1株具硫酸盐还原功能的柠檬酸杆菌的分离及其生理特性研究[J].环境科学,2010,31(3):815-820.YANG Liping, ZHENG Xiaohong, ZENG Guoqu, et al. Isolation and characterization of a sulfate reducing Citrobacter sp.strain SR3.[J]. Environmental Science,2010,31(3):815-820.
    [29]孙晶,宋东辉,刘凤路,等.一株烷烃降解细菌的分离鉴定及其降解特性[J].天津科技大学学报,2016,31(5):19-24.SUN Jing,SONG Donghui,LIU Fenglu,et al. Isolation, identification and degradation characteristics of an alkane degradation bacte-rium[J]. Journal of Tianjin University of Science&Technology,2016,31(5):19-24.
    [30]丁晨,承磊,何乔,等.互营烃降解菌系M82的脂肪酸降解特性[J].微生物学报,2014,54(11):1369-1377.DING Chen, CHENG Lei, HE Qiao, et al. Fatty acid degradation characteristics of M82, an inter-hydrocarbon degradation strain[J]. Chinese Journal of Microbiology,2014,54(11):1369-1377.
    [31] TISCHER K,KLEINSTEUBER S,SCHLEINITZ K M,et al. Microbial communities along biogeochemical gradients in a hydrocarbon-contaminated aquifer[J]. Environmental Microbiology,2013,15(9):2603-2615.
    [32]朱超,STEFAN Ratering,曲东,等.短期淹水培养对水稻土中地杆菌和厌氧粘细菌丰度的影响[J].生态学报,2011,31(15):4251-4260.ZHU Chao,STEFAN Ratering,QU Dong,et al. Effect of short-term flooding culture on the abundance of Geobacillus and anaerobic viscous bacteria in paddy soil[J]. Chinese Journal of Ecology,2011,31(15):4251-4260.
    [33] HAMDI 0,BEN H W,POSTEC A,et al. Aminobacterium thunnarium sp. nov., a mesophilic,amino acid-degrading bacterium isolated from an anaerobic sludge digester, pertaining to the phylum Synergistetes.[J]. International Journal of Systematic&Evolutionary Microbiology,2015,65(Pt 2):609-14.
    [34]占迪,何环,廖远松,等.褐煤强化产甲烷菌群的群落分析及条件优化[J],微生物学报,2018,58(4):684-698.ZHAN Di,HE Huan,LIAO Yuansong,et al. Community analysis and optimization of conditions for intensified methanogens in lignite[J]. Acta Microbiologica Sinica,2018,58(4):684-698.
    [35] BUDWILL K,KOZIEL S,VIDMAR J. Advancements in underst-anding and enhancing biogenic methane production from coals[A]. Canadian Unconventional Resources Conference[C].Canada:Society of Petroleum Engineers,2011:1-9.
    [36] MOTTERAN F, BRAGA J K,SILVA E L,et al. Kinetics of methane production and biodegradation of linear alkylbenzene sulfonate from laundry wastewater[J]. Environmental Letters,2016,51(14):1288-1302.
    [37]焦雅楠.印染废水与生活污水中抗生素抗性基因分布差异及机理研究[D].杭州:浙江大学,2017.JIAO Yanan. Differences in the distribution of antibiotic resistance genes in printing and dyeing wastewater and domestic wastewater and their mechanisms[D]. Hangzhou:Zhejiang University,2017.
    [38]王保玉,刘建民,韩作颖,等.产甲烷菌的分类及研究进展[J].基因组学与应用生物学,2014,33(2):418-425.WANG Baoyu,LIU Jianmin,HAN Zuoying,et al. Recent progress and classification of methanogens[J]. Genomics and Applied Biology,2014,33(2):418-425.
    [39]承磊,郑珍珍,王聪,等.产甲烷古菌研究进展[J].微生物学通报,2016,43(5):1143-1164.CHENG Lei, ZHENG Zhenzhen, WANG Cong, et al. Recent advances in methanogens[J]. Microbiology China, 2016,43(5):1143-1164.
    [40]刘茜,马旅雁.微生物纳米导线,纳米管与胞外电子传递及胞间物质交换[J].矿物岩石地球化学通报,2018,37(1):48-54.LIU Xi,MA Liiyan. Microbial nanowire and nonotube and their improvements in extracellular electron transfer and exchange of intracellular molecular,Bulletin of mineralogy, petrology and Geochemistry,2018,37(1):48-54.