面向瞬态EMI测试的FFT-SCZT算法研究
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Research on FFT-SCZT algorithm for transient EMI measurement
  • 作者:黄瑞龙 ; 刘桂雄 ; 黄坚 ; 钟森鸣
  • 英文作者:HUANG Ruilong;LIU Guixiong;HUANG Jian;ZHONG Senming;School of Computer & Electronic Information,Guangdong University of Petrochemical Technology;School of Mechanical & Automotive Engineering,South China University of Technology;
  • 关键词:瞬态电磁干扰 ; 快速傅里叶变换 ; 线性调频Z变换 ; 频率细分
  • 英文关键词:transient EMI;;FFT;;CZT;;frequency subdivision
  • 中文刊名:SYCS
  • 英文刊名:China Measurement & Test
  • 机构:广东石油化工学院计算机与电子信息学院;华南理工大学机械与汽车工程学院;
  • 出版日期:2017-02-28
  • 出版单位:中国测试
  • 年:2017
  • 期:v.43;No.223
  • 基金:广州市科技计划项目(201504010037)
  • 语种:中文;
  • 页:SYCS201702022
  • 页数:5
  • CN:02
  • ISSN:51-1714/TB
  • 分类号:116-119+145
摘要
针对传统接收机电磁干扰(electro-magnetic interference,EMI)测试实时性差,难以实现瞬态EMI信号测量的问题,提出基于快速傅里叶变换(fast Fourier transform,FFT)与分段线性调频Z变换(segmented chirp-Z transform,SCZT)结合的瞬态EMI测试方法。首先采用FFT对整个频谱进行初扫得到范围更小的特征频带;其次,基于SCZT时间复杂度低的特点,采用SCZT对特征频带进行频率细分;最后,应用FFT-SCZT测量对幅值动态变化、频率动态变化信号进行测量验证。实验结果表明:FFT-SCZT对幅值动态变化信号的频率、幅值测量相对误差分别小于0.004 5%、2.4%,对频率动态变化信号的频率、幅值测量相对误差分别小于0.004 7%、0.25%;FFT-SCZT算法可准确测量瞬态信号。
        On account of bad real-time performance of electro-magnetic interference(EMI) receiver,transient signals EMI measurement was difficult to achieve. A fast Fourier transform(FFT) and segmented chirp-Z transform(SCZT) based transient signals EMI measurement method was proposed.The FFT was used in sweeping the whole frequency spectrum for locating the characteristic frequency spectrum. SCZT was applied to subdivide the characteristic frequency spectrum,according to the low time complexity of it. FFT-SCZT was used in measuring simulation transient EMI signals.The results show that measured by FFT-SCZT algorithm, for amplitude transient signals, the relative error of frequency and amplitude were less than 0.004 5% and 2.4% respectively. For frequency transient signals,the relative error of frequency and amplitude were less than 0.004 7%and 0.25%.
引文
[1]张润涵,扈罗全.基于稀疏表示的电力系统谐波信号频率分析[J].中国测试,2016,42(1):35-37.
    [2]ZHU L,ZHANG C.Fast fine acquisition algorithm of GPS receiver aided by INS information[J].Journal of Systems Engineering&Electronics,2011,22(2):300-305.
    [3]雷小亚,李贵子,朱琳,等.基于密集频谱校正的电流信号高准确度分离技术[J].中国测试,2015,41(12):111-114.
    [4]张媛,王楠.基于广义谐波小波的工频功率因数测量算法[J].中国测试,2016,42(1):16-20.
    [5]RUSSER J A,BRAUN S,FRECH A,et al.Time-domain measurement of spectra of stochastic electromagnetic fields[C]∥International Conference on Electromagnetics in Advanced Applications,2013:1123-1126.
    [6]冯婕,肖骏雄,韩纪龙,等.基于幅度比值的低复杂度频偏估计算法[J].光学学报,2015,35(5):112-117.
    [7]沈斌,王建新.窄带干扰条件下含有未知载频的直扩信号的伪码序列估计[J].电子与信息学报,2015,37(7):1556-1561.
    [8]李国庆,武晓春.基于复调制的ZFFT算法在轨道电路信号检测中的应用[J].计算机测量与控制,2016,24(1):262-265.
    [9]马可,张远安,张开生.CZT和ZFFT频谱细化性能分析及FPGA实现[J].计算机测量与控制,2016,24(2):288-289.
    [10]MA C,ZHOU Q,QIN J,et al.Fast Spectrum Analysis for an OFDR using the FFT and CZT Combination Approach[J].IEEE Photonics Technology Letters,2016(28):1-1.