带有摩擦非线性的CMG框架伺服系统有限时间自适应鲁棒控制
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Finite-time adaptive robust control for CMG gimbal servo system with friction nonlinearities
  • 作者:王璐 ; 郭毓 ; 姚伟 ; 吴益飞 ; 郭健
  • 英文作者:WANG Lu;GUO Yu;YAO Wei;WU Yi-fei;GUO Jian;School of Automation,Nanjing University of Science and Technology;
  • 关键词:控制力矩陀螺 ; 框架伺服系统 ; 有限时间自适应控制 ; 摩擦非线性
  • 英文关键词:control moment gyroscopes;;gimbal servo system;;finite-time adaptive control;;friction nonlinearities
  • 中文刊名:KZYC
  • 英文刊名:Control and Decision
  • 机构:南京理工大学自动化学院;
  • 出版日期:2018-03-08 15:38
  • 出版单位:控制与决策
  • 年:2019
  • 期:v.34
  • 基金:国家自然科学基金项目(61773211,61673214,61673219);; 江苏省重点研发计划项目(BE2015164,BE2017161)
  • 语种:中文;
  • 页:KZYC201904029
  • 页数:6
  • CN:04
  • ISSN:21-1124/TP
  • 分类号:216-221
摘要
针对控制力矩陀螺框架伺服系统中存在的摩擦非线性及不确定性等问题,提出一种基于终端滑模的有限时间自适应鲁棒控制律,确保闭环控制系统跟踪误差能够在有限时间内快速收敛到包含原点在内的任意小邻域内.通过对不确定参数的在线估计提高系统对参数变化的鲁棒性,并抑制外部干扰及摩擦非线性带来的不利影响.采用Lyapunov稳定性理论对闭环控制系统的稳定性进行分析并证明.通过对陀螺框架伺服控制系统进行仿真来验证所提出的控制律的有效性.
        For a control moment gyroscopes gimbal servo system with friction nonlinearities and uncertainties, a terminal sliding mode based finite-time adaptive robust control method is presented, which can guarantee that the tracking error of the closed-loop system can converge to an arbitrarily small neighborhood containing the origin. Then, parametric uncertainties are estimated online to improve the robustness of the system to parametric variation and the adverse effects of external disturbance and friction nonlinearities on the system are reduced. The stability of the closed-loop control system is analyzed and proved via the Lyapunov stability theory. The simulation results for the gyroscopes gimbal servo control system verify the effectiveness of the proposed control law.
引文
[1]杜仁慧,吴益飞,陈威,等.考虑LuGre摩擦的伺服系统自适应模糊控制[J].控制与决策,2013,28(8):1253-1256.(Du R H,Wu Y F,Chen W,et al.Adaptive fuzzy control for the servo system with LuGre friction[J].Control and Dicision,2013,28(8):1253-1256.)
    [2]徐智浩,李胜,张瑞雷,等.基于LuGre摩擦模型的机械臂模糊神经网络控制[J].控制与决策,2014,29(6):1097-1102.(Xu Z H,Li S,Zhang R L,et al.Fuzzy-neural-network control for robot manipulators with LuGre friction model[J].Control and Dicision,2014,29(6):1097-1102.)
    [3]吴忠,张激扬.控制力矩陀螺框架伺服系统动力学建模与控制[J].应用基础与工程科学学报,2007,15(1):130-136.(Wu Z,Zhang J Y.Dynamics and control of gimbal servo systems for control moment gyroscopes[J].J of Basic Science and Engineering,2007,15(1):130-136.)
    [4]金磊,徐世杰.SGCMG框架伺服系统动力学建模与低速控制[J].中国空间科学技术,2010,30(6):1-10.(Jin L,Xu S J.Dynamic modelling and low-speed control for SGCMG ggimbal servo system[J].Chinese Space Science and Technology,2010,30(6):1-10.)
    [5]谌颖,楚中毅,李丹.某空间伸杆机构的摩擦补偿及反步自适应控制[J].宇航学报,2015,36(3):309-314.(Chen Y,Chu Z Y,Li D.A Friction and compensation and adaptive back-stepping control for a space deployable boom[J].J of Astronautics,2015,36(3):309-314.)
    [6]赵建利,王京,王慧.低速摩擦伺服系统的近似有限时间稳定跟踪控制[J].武汉科技大学学报,2013,36(2):94-97.(Zhao J L,Wang J,Wang H.Approximate finite-time stable tracking control for low-velocity friction servo system[J].J of Wuhan University of Science and Technology,2013,36(2):94-97.)
    [7]Chen Q,Yu L,Nan Y R.Finite-time tracking control for motor servo systems with unknown dead-zones[J].J of Systems Science and Complexity,2013,26(6):940-956.
    [8]Chen Q,Ren X M,Na J,et al.Adaptive robust finite-time neural control of uncertain PMSM servo system with nonlinear dead zone[J].Neural Computing and Applications,2017,28(12):3725-3736.
    [9]Zhang X G,Sun L Z,Zhao K,et al.Nonlinear speed control for PMSM system using sliding-mode control and disturbance compensation techniques[J].IEEE Trans on Power Electronics,2013,28(3):1358-1365.
    [10]De Wit C C,Olsson H,Astrom K J,et al.A new model for control of systems with friction[J].IEEE Trans on Automatic Control,1995,40(3):419-425.
    [11]Bhat S P,Bernstein D S.Finite-time stability of continuous autonomous systems[J].SIAM J on Control and Optimization,2000,38(3):751-766.
    [12]胡庆雷,李波,张爱华,等.考虑推力器安装偏差的航天器姿态机动有限时间控制[J].控制理论与应用2013,30(4):417-424.(Hu Q L,Li B,Zhang A H,et al.Finite-time attitude maneuver control of spacecraft under control saturation and misalignment[J].Control Theory&Applications2013,30(4):417-424.)