空间核反应堆电源热工水力特性研究综述
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Research Review on Thermal-hydraulic Performance of Space Nuclear Reactor Power
  • 作者:代智文 ; 刘天才 ; 王成龙 ; 张大林 ; 田文喜 ; 秋穗正 ; 苏光辉
  • 英文作者:DAI Zhiwen;LIU Tiancai;WANG Chenglong;ZHANG Dalin;TIAN Wenxi;QIU Suizheng;SU Guanghui;School of Energy and Power Engineering, Xi'an Jiaotong University;Division of Reactor Engineering Technology Research,China Institute of Atomic Energy;
  • 关键词:空间核反应堆电源 ; 热工水力 ; 研究综述
  • 英文关键词:space nuclear reactor power;;thermal-hydraulics;;research review
  • 中文刊名:YZJS
  • 英文刊名:Atomic Energy Science and Technology
  • 机构:西安交通大学能源与动力工程学院;中国原子能科学研究院反应堆工程技术研究部;
  • 出版日期:2019-06-05 13:34
  • 出版单位:原子能科学技术
  • 年:2019
  • 期:v.53
  • 基金:国家自然科学基金资助项目(11705138);; 博士后创新人才支持计划资助项目(BX201600124);; 博士后面上基金资助项目(2016M600796)
  • 语种:中文;
  • 页:YZJS201907020
  • 页数:14
  • CN:07
  • ISSN:11-2044/TL
  • 分类号:150-163
摘要
随着空间探索领域的快速发展,研究高功率、安全、可靠的空间核反应堆电源将变得愈发重要。本文针对国内外空间核反应堆电源的热工水力关键问题,即空间堆系统稳态和事故瞬态研究、堆芯单冷却剂通道及全堆芯的三维流动换热、静态与动态热电转换装置分析、热工水力特性试验研究等进行研究,分析了空间核反应堆电源热工水力研究的趋势。本文结果可为空间核反应堆电源设计分析及热工水力安全特性研究提供帮助和指导。
        With the fast development of space exploration, it is of great importance to conduct research and design of the space nuclear reactor power featured with high power, safety and reliability. This paper focused on the key issues of thermal-hydraulic characteristics of space nuclear reactor power at home and abroad, including the study on steady-state and transient-state analysis of space nuclear reactor power system, 3 D flow and heat transfer in the reactor core, analysis of the static and dynamic thermoelectric conversion system, key phenomena of thermal-hydraulic experiments. Based on the literature review, the current development and research trend of space nuclear reactor power was summarized. This paper would provide some valuable suggestions for design and thermal-hydraulic characteristics study of the space nuclear reactor power.
引文
[1] 苏著亭,杨继材,柯国土.空间核动力[M].上海:上海交通大学出版社,2016.
    [2] PRUSCHEK R,GROSS F,STEHLE H,et al.Incore thermionic reactor ITR[R].Germany:[s.n.],1971.
    [3] DEANE N A,MURATA R E,KRUGER G B.SP-100 reactor design and performance[C]//Energy Conversion Engineering Conference.USA:IEEE,1989.
    [4] BURGIO N,CUMO M,FASANO A,et al.Preliminary neutronic design of SPOCK reactor:A nuclear system for space power generation[R].Italy:University of Rome,2007.
    [5] EL-GENK M S.Space nuclear reactor power system concepts with static and dynamic energy conversion[J].Energy Conversion & Management,2008,49(3):402-411.
    [6] EL-GENK M S,TOURNIER J M.Conceptual design of HP-STMCs space reactor power system for 110 kWe[J].AIP Conference Proceedings,2004,doi:10.1063/1.1649628.
    [7] KING J C,EL-GENK M S.Submersion-subcritical safe space (S4) reactor[J].Nuclear Engineering & Design,2006,236(17):1 759-1 777.
    [8] POSTON D I,GODFROY T,MCCLURE P R,et al.Kilopower project:KRUSTY experiment nuclear design[R].USA:NASA Glenn Research Center,2015.
    [9] GUIMAR?ES L N F,RIBEIRO G B,de ,et al.TERRA project:A Brazilian view for nuclear energy application to space exploration[C]//NETS:Nuclear and Emerging Technologies for Space.Orlando:[s.n.],2017.
    [10] GUIMAR?ES L N F,RIBEIRO G B,do NASCIMENTO J A,et al.TERRA:A nuclear reactor to help explore space,deep ocean and difficult access locations[C]//International Nuclear Atlantic Conference.Brazil:[s.n.],2017.
    [11] THUR G M.Design changes in SNAP-8 for reduced reactor operating temperatures[C]//Fifth Intersociety Energy Conversion Engineering Conference.[S.l.]:[s.n.],1970.
    [12] HARTY R B,OTTING W D,KUDIJA C T.Applications of Brayton cycle technology to space power[J].IEEE Aerospace & Electronic Systems Magazine,2002,9(1):28-32.
    [13] POSTON D I.The heatpipe-operated mars exploration reactor (HOMER)[C]//Proceedings of Space Technology and Applications International Forum.USA:American Institute of Physics,2001.
    [14] KAMBE M,TSUNODA H,MISHIMA K,et al.Rapid-L operator-free fast reactor concept without any control rods[J].Nuclear Technology,2003,143:11-21.
    [15] BUSHMAN A,CARPENTER D M,ELLIS T S,et al.The martian surface reactor:An advanced nuclear power station for manned extraterrestrial exploration[R].USA:Massachusetts Institute of Technology,2004.
    [16] EL-GENK M S,HATTON S,FOX C,et al.SCoRe:Concepts of liquid metal cooled space reactors for avoidance of single-point failure[J].AIP Conference Proceedings,2005,doi:10.1063/1.1867163.
    [17] MASON L,POSTON D,QUALLS L.System concepts for affordable fission surface power[C]//Space Technology and Applications International Forum.USA:[s.n.],2008.
    [18] MAISE G,POWELL J,PANIAGUA J.SUSEE:A compact,lightweight space nuclear power system using present water reactor technology[J].AIP Conference Proceedings,2006,doi:10.1063/1.2169207.
    [19] POSTON D I,KAPERNICK R J,GUFFEE R M.Design and analysis of the SAFE-400 space fission reactor[J].AIP Conference Proceedings,2002,608:578-588.
    [20] BESS J D.Project luna succendo:The lunar evolutionary growth-optimized (LEGO) reactor[D].USA:University of Utah,2008.
    [21] BESS J D.A basic LEGO reactor design for the provision of lunar surface power[C]//International Conference on Advances in Nuclear Power Plants,ICAPP.USA:[s.n.],2008.
    [22] GIBSON M A,MASON L S,BOWMAN C,et al.Kilopower,NASA’s small fission power system for science and human exploration[C]//International Energy Conversion Engineering Conference.[S.l.]:[s.n.],2015.
    [23] EL-GENK M S,XUE H,MURRAY C.Transient and load-following characteristics of a fully integrated single-cell thermionic fuel element[J].Nuclear Technology,1993,102:145-166.
    [24] PARAMONOV D V.Steady-state and transient analyses of the TOPAZ-Ⅱ space nuclear power system[D].USA:University of New Mexico,1993.
    [25] PARAMONOV D V,EL-GENK M S.Development and comparison of a TOPAZ-Ⅱ system model with experimental data[J].Nuclear Technology,1994,108:157-170.
    [26] XUE H,EL-GENK M S,PARAMONOV D.Two-dimensional steady-state analysis of an electrically heated thermionic fuel element[J].AIP Conference Proceedings,1993,271:1 661-1 672.
    [27] EL-GENK M S,PARAMONOV D V.An integrated model of the TOPAZ-Ⅱ electromagnetic pump[J].Nuclear Technology,1994,108:171-180.
    [28] PARAMONOV D V,EL-GENK M S.A detailed thermal-hydraulic model of the TOPAZ-Ⅱ radiator[C]//Symposium on Space Nuclear Power & Propulsion.USA:American Institute of Physics,1995.
    [29] MOHAMED S,EL-GENK M S,PARAMONOV D V,et al.Startup simulation of the TOPAZ-Ⅱ reactor system for accident conditions[J].AIP Conference Proceedings,1994,301:1 059-1 068.
    [30] EL-GENK M S,XUE H,PARAMONOV D.Start-up simulation of a thermionic space nuclear reactor system[J].AIP Conference Proceedings,1993,271:935-950.
    [31] EL-GENK M S,PARAMONOV D.An analysis of thermionic space nuclear reactor power system,Ⅰ:Effect of disassembling radial reflector,following a reactivity initiated accident[J].AIP Conference Proceedings,1993,doi:10.1063/1.43230.
    [32] EL-GENK M S,XUE H.An analysis of thermionic space nuclear reactor power system,Ⅱ:Merits of using safety drums for backup control[J].AIP Conference Proceedings,1993,271:129-142.
    [33] DIBBEN M J,KIM T,TUTTLE R F.Modeling space nuclear power systems with CENTAR[J].AIP Conference Proceedings,1992,246:1 135-1 140.
    [34] STANDLEY V H,MORRIS D B,SCHULLER M J.CENTAR modelling of the TOPAZ-Ⅱ:Loss of vacuum chamber cooling during full power ground test[J].AIP Conference Proceedings,1992,246:1 129-1 134.
    [35] ARX V,VINCENT A.System simulation of a multicell thermionic space power reactor[D].Los Angeles:University of California,1999.
    [36] ASTRIN C D.Startup control of the TOPAZ-Ⅱ space nuclear reactor[D].California:Naval Postgraduate School,1996.
    [37] PELOWITZ D B,SAPIR J,GLUSHKOV E S,et al.Dry critical experiments and analyses performed in support of the TOPAZ-2 safety program[C]//12th Symposium on Space Nuclear Power and Propulsion.USA:American Institute of Physics,1995.
    [38] PONOMAREV-STEPNOI N N,GLUSHKOV Y S,YERMOSHIN M Y,et al.Analysis of critical reactor response for TOPAZ-Ⅱ water immersion scenarios[J].AIP Conference Proceedings,1994,301:1 069-1 076.
    [39] ZHANG W,WANG C,CHEN R,et al.Preliminary design and thermal analysis of a liquid metal heat pipe radiator for TOPAZ-Ⅱ power system[J].Annals of Nuclear Energy,2016,97:208-220.
    [40] 邹佳讯,郭春秋,赵守智.TOPAZ-Ⅱ型反应堆堆芯热工水力数值模拟[J].原子能科学技术,2014,48(增刊):302-307.ZOU Jiaxun,GUO Chunqiu,ZHAO Shouzhi.Numerical simulation of thermal-hydraulic behavior in TOPAZ-Ⅱ reactor core[J].Atomic Energy Science and Technology,2014,48(Suppl.):302-307(in Chinese).
    [41] 黄东兴.单节热离子二极管温度场及伏安特性计算程序研制[D].北京:中国原子能科学研究院,1998.
    [42] LUCHAU D W,FOLLIS H D,SCHREIBER C A.Thermionic fuel element test rig:Testing of single cell thermionic fuel element technology[J].AIP Conference Proceedings,1994,301:1 031-1 036.
    [43] SCHMIDT G L,OGLOBLIN B,SINKEVICH V,et al.TOPAZⅡ non-nuclear qualification test program[J].AIP Conference Proceedings,1994,301:1 185-1 191.
    [44] PARAMONOV D V,EL-GENK M S.Analysis of Ya21u thermionic fuel elements[J].Nuclear Technology,1996,116:261-269.
    [45] VENABLE J R.Electrical characteristics and thermal analysis of a TOPAZ-Ⅱ single-cell thermionic fuel element test stand[D].California:Naval Postgraduate School,1995.
    [46] GAETA M J,BEST F R.Transient thermal analysis of a space reactor power system[J].Nuclear Technology,2017,103:19-33.
    [47] KLEIN S K,KIMPLAND R H.Dynamic system simulation of the KRUSTY experiment[R].US:Los Alamos National Laboratory,2016.
    [48] POSTON D I.KRUSTY design and modeling[R].US:Los Alamos National Laboratory,2016.
    [49] 刘松涛,袁园,魏宗岚,等.热管冷却空间反应堆事故特性研究[J].核动力工程,2016,37(5):119-124.LIU Songtao,YUAN Yuan,WEI Zonglan,et al.Accident analysis of heat pipe cooled space reactor system[J].Nuclear Power Engineering,2016,37(5):119-124(in Chinese).
    [50] 田晓艳,江新标,陈立新,等.热管冷却双模式空间堆堆芯稳态热工水力分析程序开发[J].核动力工程,2017,38(5):34-39.TIAN Xiaoyan,JIANG Xinbiao,CHEN Lixin,et al.Development of code for steady-state thermal-hydraulic analysis in bimodal space nuclear reactor with heat pipe[J].Nuclear Power Engineering,2017,38(5):34-39(in Chinese).
    [51] 田晓艳,江新标,陈立新,等.热管冷却双模式空间堆堆芯瞬态安全特性分析[J].原子能科学技术,2017,51(12):2 136-2 142.TIAN Xiaoyan,JIANG Xinbiao,CHEN Lixin,et al.Transient-state safety characteristic analysis of bimodal space reactor with heat pipe[J].Atomic Energy Science and Technology,2017,51(12):2 136-2 142(in Chinese).
    [52] 李华琪,江新标,陈立新,等.空间堆堆芯热管蒸气流动计算方法研究[J].核动力工程,2014,35(6):37-40.LI Huaqi,JIANG Xinbiao,CHEN Lixin,et al.Calculation method for vapor flow in space nuclear reactor heat pipe[J].Nuclear Power Engineering,2014,35(6):37-40(in Chinese).
    [53] KAPERNICK R J,GUFFEE R M.Thermal stress calculations for heatpipe-cooled reactor power systems[J].AIP Conference Proceedings,2003,645:457-465.
    [54] 张文文,王成龙,田文喜,等.新型热管反应堆堆芯热工安全分析[J].原子能科学技术,2017,51(5):822-827.ZHANG Wenwen,WANG Chenglong,TIAN Wenxi,et al.Thermal safety analysis of new type heat pipe reactor core[J].Atomic Energy Science and Technology,2017,51(5):822-827(in Chinese).
    [55] COTTER T P.Theory of heat pipes,Los Alamos-3246[R].New Mexico:[s.n.],1965.
    [56] BEARD D,ANDERSON W G,TARAU C,et al.High temperature water heat pipes for kilopower system[C]∥15th International Energy Conversion Engineering Conference,AIAA Propulsion and Energy Forum.[S.l.]:[s.n.],2017.
    [57] BEARD D,TARAU C,ANDERSON W G.Sodium heat pipes for space and surface fission powe[C]//15th International Energy Conversion Engineering Conference,AIAA Propulsion and Energy Forum.[S.l.]:[s.n.],2017.
    [58] 王成龙,宋健,陈静,等.TOPAZ-Ⅱ改进型热管辐射换热器传热单元数值研究[J].原子能科学技术,2016,50(1):80-85.WANG Chenglong,SONG Jian,CHEN Jing,et al.Numerical study of heat transfer unit on improved thermal-radiator of TOPAZ-Ⅱ[J].Atomic Energy Science and Technology,2016,50(1):80-85(in Chinese).
    [59] 胡攀,陈立新,王立鹏,等.热管冷却反应堆燃料组件稳态热分析[J].现代应用物理,2013,4(4):374-378.HU Pan,CHEN Lixin,WANG Lipeng,et al.Steady-state thermal analysis of a fuel module in the heat pipe-cooled reactor[J].Modern Applied Physics,2013,4(4):374-378(in Chinese).
    [60] FAN S,LI M,LI S,et al.Thermodynamic analysis and optimization of a stirling cycle for lunar surface nuclear power system[J].Applied Thermal Engineering,2017,111:60-67.
    [61] 梁光照.航天用斯特林发电机控制系统的研究[D].哈尔滨:哈尔滨工业大学,2016.
    [62] COLLINS J,WONG W,DUNLAP M A,et al.Sunpower’s dynamic conversion to flight with the advanced stirling convertor (ASC-F)[C]//10th International Energy Conversion Engineering Conference.[S.l.]:[s.n.],2012.
    [63] van DYKE M K,MARTIN J J,HOUTS M G.Overview of non-nuclear testing of the safe,affordable 30-kW fission engine,including end-to-end demonstrator testing[R].USA:NASA Technical Reports Server,2003.
    [64] STINSONBAGBY K L,FIELDER R S,van DYKE M K,et al.Realistic testing of the safe affordable fission engine (SAFE-100) thermal simulator using fiber bragg gratings[J].AIP Conference Proceedings,2004,699:749-756.
    [65] GODFROY T,van DYKE M,DICKENS R,et al.Realistic development and testing of fission systems at a non-nuclear testing facility[J].AIP Conference Proceedings,2000,504:1 208-1 210.
    [66] DYKE M V,HOUTS M,GODFROY T,et al.Phase 1 space fission propulsion system testing and development progress[J].AIP Conference Proceedings,2002,608:692-697.
    [67] WRIGHT S A,LIPINSKI R J,PANDYA T,et al.Proposed design and operation of a heat pipe reactor using the sandia national laboratories annular core test facility and existing UZrH fuel pins[J].AIP Conference Proceedings,2005,doi:10.1063/1.1867161.
    [68] GIBSON M A,BRIGGS M H,SANZI J L,et al.Heat pipe powered stirling conversion for the demonstration using flattop fission (DUFF) test[R].USA:American Nuclear Society,2013.
    [69] MCCLURE,PATRICK R,POSTON,et al.Final results of demonstration using flattop fissions (DUFF) experiment[R].US:Los Alamos National Laboratory,2012.
    [70] KLEIN S K,KIMPLAND R H.Dynamic system simulation of the KRUSTY experiment[R].US:Los Alamos National Laboratory,2016.
    [71] BRIGGS M H,GIBSON M A,SANZI J.Electrically heated testing of the kilowatt reactor using stirling technology (KRUSTY) experiment using a depleted uranium core[C]//14th International Energy Conversion Engineering Conference.USA:[s.n.],2017.
    [72] GIBSON M A,OLESON S R,POSTON D I,et al.NASA’s kilopower reactor development and the path to higher power missions[C]∥ IEEE Aerospace Conference.USA:IEEE,2017.
    [73] SEO J T.SNPSAM:Space nuclear power system analysis model[D].USA:University of New Mexico,1986.
    [74] STANDLEY V H.Customizing SNPSAM:Introducing a secondary coolant loop[D].USA:Air Force Institute of Technology,1988.
    [75] EL-GENK M S,RIDER W J.Reliability and vulnerability studies of the SP-100 dual-loop thermoelectric-electromagnetic pump[J].Journal of Propulsion and Power,1990,6(3):305-314.
    [76] EL-GENK M S,SEO J T.Study of the SP-100 radiator heat pipes response to external thermal exposure[J].Journal of Propulsion and Power,1990,6(1):69-77.
    [77] EL-GENK M S,TOURNIER J M.DynMo-TE:Dynamic simulation model of space reactor power system with thermoelectric converters[J].Nuclear Engineering and Design,2006,236(23):2 501-2 529.
    [78] FLETCHER C D.Capabilities of the ATHENA computer code for modeling the SP-100 space reactor concept[R].USA:EG and G Idaho,Inc.,1985.
    [79] SCHRIENER T M,EL-GENK M S.Neutronics and thermal-hydraulics analysis of a long operational life LMR for lunar surface power[J].Fusion Science and Technology,2012,61(1):349-354.
    [80] SCHRIENER T M,EL-GENK M S.Thermal-hydraulics and safety analyses of the solid core-sectored compact reactor (SC-SCoRe) and power system[J].Progress in Nuclear Energy,2014,76:216-231.
    [81] SCHRIENER T M,EL-GENK M S.Comparative CFD analyses of liquid metal cooled reactor for lunar surface power[J].Nuclear Engineering and Design,2014,280:105-121.
    [82] SCHRIENER T M,EL-GENK M S.Convection heat transfer of NaK-78 liquid metal in a circular tube and a tri-lobe channel[J].International Journal of Heat and Mass Transfer,2015,86:234-243.
    [83] EL-GENK M S,TOURNIER J M.Startup and load-following transients of a thermoelectric space reactor system with no single point failure[C]//3rd International Energy Conversion Engineering Conference.[S.l.]:[s.n.],2005.
    [84] EL-GENK M S,TOURNIER J M.DynMo-CBC:Dynamic simulation model of a space reactor power system with multiple CBC loops[C]//International Energy Conversion Engineering Conference.[S.l.]:[s.n.],2013.
    [85] EL-GENK M S,TOURNIER J M P,GALLO B M.Dynamic simulation of a space reactor system with closed Brayton cycle loops[J].Journal of Propulsion and Power,2010,26(3):394-406.
    [86] KING J C,EL-GENK M S.Thermal-hydraulic analyses of the submersion-subcritical safe space (S4) reactor[J].Nuclear Engineering and Design,2007,880(1):2 809-2 819.
    [87] KING J C,EL-GENK M S.Thermal-hydraulic and neutronic analyses of the submersion-subcritical,safe space (S4 ) reactor[J].Nuclear Engineering and Design,2009,239(12):2 809-2 819.
    [88] KING J C,EL-GENK M S.Temperature and burnup reactivities and operational lifetime for the submersion-subcritical,safe space (S4) reactor[J].Nuclear Engineering and Design,2007,237(5):552-564.
    [89] LEVINE B.Space nuclear power plant pre-conceptual design report[R].New York:Knolls Atomic Power Laboratory,2006.
    [90] 游尔胜,石磊,郑艳华,等.球床堆在空间核动力系统中的应用[J].原子能科学技术,2015,49(增刊):75-80.YOU Ersheng,SHI Lei,ZHENG Yanhua,et al.Application of pellet bed reactor in space nuclear power system[J].Atomic Energy Science and Technology,2015,49(Suppl.):75-80(in Chinese).
    [91] EL-GENK M S,TOURNIER J M.On the use of noble gases and binary mixtures as reactor coolants and CBC working fluids[J].Energy Conversion and Management,2008,49(7):1 882-1 891.
    [92] EL-GENK M S,TOURNIER J M.Noble gas binary mixtures for gas-cooled reactor power plants[J].Nuclear Engineering and Design,2008,238(6):1 353-1 372.
    [93] 李杨柳,赵守智,孙征,等.氦氙混合气体冷却反应堆单通道程序开发[J].原子能科学技术,2017,51(1):41-45.LI Yangliu,ZHAO Shouzhi,SUN Zheng,et al.Development of single channel program for helium and xenon mixture cooled reactor[J].Atomic Energy Science and Technology,2017,51(1):41-45(in Chinese).
    [94] 李智,杨小勇,王捷,等.空间反应堆布雷顿循环热力学优化分析[J].原子能科学技术,2017,51(7):1 173-1 180.LI Zhi,YANG Xiaoyong,WANG Jie,et al.Thermodynamic optimization and analysis of brayton-cycle system for space power reactor[J].Atomic Energy Science and Technology,2017,51(7):1 173-1 180(in Chinese).
    [95] 李智,杨小勇,王捷,等.空间反应堆Brayton循环的热力学特性[J].清华大学学报:自然科学版,2017,57(5):537-543,549.LI Zhi,YANG Xiaoyong,WANG Jie,et al.Thermodynamic analysis of a Brayton cycle system for a space power reactor[J].Journal of Tsinghua University:Science and Technology,2017,57(5):537-543,549(in Chinese).
    [96] 郭凯伦,王成龙,田文喜,等.兆瓦级核电推进系统布雷顿循环热电转换系统分析[C]//第一届全国空间核动力学术会议.[出版地不详]:[出版者不详],2017
    [97] JUHASZ A.Heat transfer analysis of a closed brayton cycle space radiator[C]//5th International Energy Conversion Engineering Conference and Exhibit (IECEC).USA:AIAA,2007.