用于高效析氧反应的交联多孔镍阵列的合理构建(英文)
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Rational construction of cross-linked porous nickel arrays for efficient oxygen evolution reaction
  • 作者:张凯丽 ; 邓盛珏 ; 钟宇 ; 王亚东 ; 吴建波 ; 王秀丽 ; 夏新辉 ; 涂江平
  • 英文作者:Kaili Zhang;Shengjue Deng;Yu Zhong;Yadong Wang;Jianbo Wu;Xiuli Wang;Xinhui Xia;Jiangping Tu;State Key Laboratory of Silicon Materials, Key Laboratory of Advanced Materials and Applications for Batteries of Zhejiang Province, and School of Materials Science and Engineering, Zhejiang University;School of Engineering,Nanyang Polytechnic;Zhejiang Provincial Key Laboratory for Cutting Tools, Taizhou University;
  • 关键词:氧气释放反应 ; 镍阵列 ; 电催化 ; 多孔结构 ; 电沉积
  • 英文关键词:Oxygen evolution reaction;;Nickel arrays;;Electrocatalysis;;Porous structure;;Electrodeposition
  • 中文刊名:CHUA
  • 英文刊名:Chinese Journal of Catalysis
  • 机构:浙江大学材料科学与工程学院硅材料国家重点实验室浙江省电池新材料与应用技术研究重点实验室;新加坡南洋理工学院工程系;台州学院浙江省工量刀具检测与深加工技术研究重点实验室;
  • 出版日期:2019-05-29
  • 出版单位:催化学报
  • 年:2019
  • 期:v.40
  • 基金:supported by the National Natural Science Foundation of China(51772272,51502263,51728204);; the Fundamental Research Funds for the Central Universities(2018QNA4011);; Qianjiang Talents Plan of Zhejiang Province(QJD1602029);; the Program for Innovative Research Team in University of Ministry of Education of China(IRT13037);; the Startup Foundation for Hundred-Talent Program of Zhejiang University~~
  • 语种:英文;
  • 页:CHUA201907008
  • 页数:7
  • CN:07
  • ISSN:21-1601/O6
  • 分类号:111-117
摘要
为应对世界能源格局的巨大变化,追求高效绿色能源技术研究始终是一个热点.通常,电化学水分解被认为是最有潜力的环境友好型能量转换策略之一.氧气释放反应(OER)作为水分解的必要过程依赖于低成本高效电催化剂的发展.目前,贵金属氧化物(如氧化铱/氧化钌)被认为是碱性溶液中最高效的OER催化剂.然而,高成本、稀缺性和不稳定性阻碍了它们的广泛应用.因此,探索成本低廉且高效的OER电催化剂成为现今工作的重点.以过渡金属为基础的催化剂因其天然丰度、较高的催化活性、低廉的成本和较好的循环稳定性受到人们的青睐.其中,包括氢氧化镍、氧化镍、硫化镍、磷化镍等在内的镍基化合物是最有代表性的研究对象.到目前为止,已有很多工作对镍基材料进行优化来增强其电子导电性和电化学活性面积,从而大大提高了OER催化性能.但是,这些非阵列的镍基材料由于物质团聚导致反应活性位点被覆盖,??g?遫圃?h??圃???遫圃????圃}圃j?遫圃????}圃悍?遫圃?h??圃肍???遫圃f???灚圃肏?遫圃??悐?肐????遫圃同时平面或者粉末状的结构使得材料表面与电解液的接触面积有限,因而催化性能受到限制.相比之下,无粘合剂的3D多孔镍结构通过增加可接触面积和电化学活性位点来改善电催化活性,交联结构也为电子传输和离子扩散提供了更丰富和更短的传输通道,从而提高了催化剂的导电性,有利于电催化性能的提高.本文通过简便的一步电沉积方法合理地设计了具有交联多孔结构的3D镍阵列作为碱性溶液中自支撑的高效OER电催化剂.SEM图清晰地展示了3D多孔镍阵列的形貌特征.3D镍与基底结合紧密且均匀有序地生长,表现出高度交联分支的多孔结构,样品由许多直径为0.5–1.5μm的镍颗粒构成,阵列的孔洞直径为5–10μm.对3D多孔镍阵列的形成机理进行了探讨.利用TEM和XRD对样品进行了微观结构和物相的进一步表征,发现镍分支由200–400 nm的纳米颗粒组成.通过晶面间距、电子选区衍射和XRD图谱确定合成了镍的纯相,并与泡沫镍的形貌和物相进行了对比.样品的电催化性能测试表明,与泡沫镍相比, 3D多孔镍表现出优越的OER电催化性能,具有较低的过电位(50 mA cm~(–2)时为496 mV)、较小的Tafel斜率(43m V dec~(–1))、较小的电阻、较大的电化学活性面积以及碱性溶液中的长期稳定性(24小时后无衰变).同时,我们在对3D多孔镍催化性能提高的原因进行了分析.本文提出的合理设计策略可为其他先进3D多孔材料的构建以及电催化剂的改进提供一个新思路.
        It is important but challenging to design and fabricate an efficient and cost-effective electrocatalyst for the oxygen evolution reaction(OER). Herein, we report free-standing 3 D nickel arrays with a cross-linked porous structure as interesting and high-performance electrocatalysts for OER via a facile one-step electrodeposition method. The 3 D nickel arrays are strongly anchored on the substrate, forming self-supported electrocatalysts with reinforced structural stability and high electrical conductivity. Because of their increased active surface area, abundant channels for electron/ion transportation and enhanced electronic conductivity, the designed 3 D nickel arrays exhibit superior electrocatalytic OER performance with a low overpotential(496 mV at 50 mA cm~(–2)) and a small Tafel slope(43 mV dec~(–1)) as well as long-term stability(no decay after 24 h) in alkaline solution. Our proposed rational design strategy may open up a new way to construct other advanced 3 D porous materials for widespread application in electrocatalysis.
引文
[1]W.Xu,H.Wang,Chin.J.Catal.,2017,38,991-1005.
    [2]Y.Jiao,Y.Zheng,M.Jaroniec,S.Z.Qiao,Chem.Soc.Rev.,2015,44,2060-2086.
    [3]X.He,F.Yin,H.Wang,B.Chen,G.Li,Chin.J.Catal.,2018,39,207-227.
    [4]S.Deng,F.Yang,Q.Zhang,Y.Zhong,Y.Zeng,S.Lin,X.Wang,X.Lu,C.Z.Wang,L.Gu,X.Xia,J.Tu,Adv.Mater.,2018,30,1802223.
    [5]J.Li,G.Du,X.Cheng,P.Feng,X.Luo,Chin.J.Catal.,2018,39,982-987.
    [6]R.Souleymen,Z.Wang,C.Qiao,M.Naveed,C.Cao,J.Mater.Chem.A,2018,6,7592-7607.
    [7]S.Deng,Y.Zhong,Y.Zeng,Y.Wang,Z.Yao,F.Yang,S.Lin,X.Wang,X.Lu,X.Xia,J.Tu,Adv.Mater.,2017,29,1700748.
    [8]S.Deng,Y.Zhong,Y.Zeng,Y.Wang,X.Wang,X.Lu,X.Xia,J.Tu,Adv.Sci.,2018,5,1700772.
    [9]S.Deng,S.Shen,Y.Zhong,K.Zhang,J.Wu,X.Wang,X.Xia,J.Tu,J.Energy Chem.,2017,26,1203-1209.
    [10]A.Swesi,J.Masud,M.Nath,Energy Environ.Sci.,2016,9,1771-1782.
    [11]X.Zhao,W.Zhang,R.Cao,J.Energy Chem.,2017,26,1210-1216.
    [12]C.C.L.McCrory,S.Jung,J.C.Peters,T.F.Jaramillo,J.Am.Chem.Soc.,2013,135,16977-16987.
    [13]J.T.Zhang,Z.H.Zhao,Z.H.Xia,L.M.Dai,Nat.Nanotechnol.,2015,10,444-452.
    [14]B.Q.Li,C.Tang,H.F.Wang,X.L.Zhu,Q.Zhang,Sci.Adv.,2016,2,e1600495.
    [15]L.Trotochaud,S.L.Young,J.K.Ranney,S.W.Boettcher,J.Am.Chem.Soc.,2014,136,6744-6753.
    [16]J.Jiang,F.Sun,S.Zhou,W.Hu,H.Zhang,J.Dong,Z.Jiang,J.Zhao,J.Li,W.Yan,M.Wang,Nat.Commun.,2018,9,2885.
    [17]L.Peng,S.S.A.Shah,Z.Wei,Chin.J.Catal.,2018,39,1575-1593.
    [18]M.Gao,W.Sheng,Z.Zhuang,Q.Fang,S.Gu,J.Jiang,Y.Yan,J.Am.Chem.Soc.,2014,136,7077-7084.
    [19]R.Subbaraman,D.Tripkovic,K.C.Chang,D.Strmcnik,A.P.Paulikas,P.Hirunsit,M.Chan,J.Greeley,V.Stamenkovic,N.M.Markovic,Nat.Mater.,2012,11,550-557.
    [20]I.J.Godwin,M.E.G.Lyons,Electrochem.Commun.,2013,32,39-42.
    [21]W.Zhou,X.J.Wu,X.Cao,X.Huang,C.Tan,J.Tian,H.Liu,J.Wang,H.Zhang,Energy Environ.Sci.,2013,6,2921-2924.
    [22]X.Yu,Y.Feng,B.Guan,X.W.Lou,U.Paik,Energy Environ.Sci.,2016,9,1246-1250.
    [23]B.You,N.Jiang,M.Sheng,M.W.Bhushan,Y.Sun,ACS Catal.,2016,6,714-721.
    [24]M.Xu,L.Han,Y.J.Han,Y.Yu,J.F.Zhai,S.J.Dong,J.Mater.Chem.A,2015,3,21471-21477.
    [25]M.Shalom,D.Ressnig,X.Yang,G.Clavel,T.P.Fellinger,M.Antonietti,J.Mater.Chem.A,2015,3,8171-8177.
    [26]S.Chen,J.Duan,J.Ran,M.Jaroniec,S.Z.Qiao,Energy Environ.Sci.,2013,6,3693-3699.
    [27]J.Wang,H.X.Zhong,Y.L.Qin,X.B.Zhang,Angew.Chem.Int.Ed.,2013,52,5248-5253.
    [28]G.Cai,W.Zhang,L.Jiao,S.H.Yu,H.L.Jiang,Chem,2017,2,791-802.
    [29]S.Chen,J.Duan,M.Jaroniec,S.Z.Qiao,Adv.Mater.,2014,26,2925-2930.
    [30]M.T.Y.Paul,B.B.Yee,D.R.Bruce,B.D.Gates,ACS Appl.Mater.Interfaces,2017,9,7036-7043.
    [31]X.Li,Y.Fang,X.Lin,M.Tian,X.An,Y.Fu,R.Li,J.Jin,J.Ma,J.Mater.Chem.A,2015,3,17392-17402.
    [32]G.Fu,X.Yan,Y.Chen,L.Xu,D.Sun,J.M.Lee,Y.Tang,Adv.Mater.,2018,30,1704609.
    [33]Y.Zhang,B.Ouyang,J.Xu,S.Chen,R.S.Rawat,H.J.Fan,Adv.Energy Mater.,2016,6,1600221.
    [34]Y.Zhong,X.Xia,S.Deng,D.Xie,S.Shen,K.Zhang,W.Guo,X.Wang,J.Tu,Adv.Mater.,2018,https://doi.org/10.1002/adma.201805165.
    [35]L.Zhang,X.Xia,Y.Zhong,D.Xie,S.Liu,X.Wang,J.Tu,Adv.Mater.,2018,https://doi.org/10.1002/adma.201804011.
    [36]X.Xia,S.Deng,D.Xie,Y.Wang,S.Feng,J.Wu,J.Tu,J.Mater.Chem.A,2018,6,15546-15552.
    [37]Q.Xiong,H.Chi,J.Zhang,J.Tu,J.Alloys Compd.,2016,688,729-735.
    [38]Q.Xiong,C.Zheng,H.Chi,J.Zhang,Z.Ji,Nanotechnology,2017,28,055405.
    [39]Q.Q.Xiong,J.J.Lou,X.J.Teng,X.X.Lu,S.Y.Liu,H.Z.Chi,Z.G.Ji,J.Alloys Compd.,2018,743,377-382.
    [40]Z.Yao,X.Xia,D.Xie,Y.Wang,C.Zhou,S.Liu,S.Deng,X.Wang,J.Tu,Adv.Funct.Mater.,2018,28,1802756.????恙?????????????????????????聡????聣??????聦??????聩??????聬????恮???聯?????恱???聲???????????????聸??