第三代汽车用高强钢——Q&P钢的研究现状
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Research status of the 3rd generation advanced high strength steels for automobiles—Q&P steels
  • 作者:安柯宇 ; 梁佳敏 ; 幸非凡 ; 田亚强
  • 英文作者:An Keyu;Liang Jiamin;Xing Feifan;Tian Yaqiang;Key Laboratory of the Ministry of Education for Modern Metallurgy Technology,North China University of Science and Technology;
  • 关键词:Q&P钢 ; 残留奥氏体 ; 热力学 ; 微观组织 ; 力学性能
  • 英文关键词:Q&P steels;;retained austenite;;thermodynamic;;microstructure;;mechanical properties
  • 中文刊名:JSRC
  • 英文刊名:Heat Treatment of Metals
  • 机构:华北理工大学教育部现代冶金技术重点实验室;
  • 出版日期:2019-02-25
  • 出版单位:金属热处理
  • 年:2019
  • 期:v.44;No.498
  • 基金:国家自然科学基金(51574107);; 河北省自然科学基金(E2017209048);; 华北理工大学大学生创新创业训练计划项目(X2017331)
  • 语种:中文;
  • 页:JSRC201902002
  • 页数:7
  • CN:02
  • ISSN:11-1860/TG
  • 分类号:8-14
摘要
Q&P钢经淬火配分(Q&P)工艺处理,所得组织由马氏体和残留奥氏体复合相共同组成,因其具有高强度和高塑性而备受关注。Q&P工艺的关键在于获得更多的残留奥氏体和提高残留奥氏体的稳定性。C从马氏体向奥氏体配分是稳定残留奥氏体的重要因素,并且受到其他因素的影响,一直是Q&P钢领域研究的重点和难点。本文从C配分的热力学、动力学,主要合金元素的影响,热处理工艺,组织和力学性能的关系4个方面,简要综述了国内外Q&P钢的研究进展,并对未来的研究方向进行了展望。
        The Q&P steels( steels treated by quenching and partitioning process) are composed of compounded microstructure with martensite and retained austenite,which have received much attention because of the high strength and ductility. The key of Q&P process is to obtain more retained austenite and improve the stability of retained austenite. The carbon partitioning from martensite to austenite is an important factor in stabilizing retained austenite and is influenced by other factors,which is regarded as one of the most significant and challenging topics in the field. This paper briefly summarized the research progress of Q&P steels at home and abroad with four particular focuses on the thermodynamics and kinetics of carbon partitioning,the influence of primary alloying elements,the heat treatment,and the relationship between microstructure and mechanical properties. The future research direction in the field is also prospected.
引文
[1]Grssel O,Krüger L,Frommeyer G,et al. High strength Fe-Mn-(Al,Si)TRIP/TWIP steels development—properties—application[J].International Journal of Plasticity,2000,16(10):1391-1409.
    [2]Cooman B C D. Structure-properties relationship in TRIP steels containing carbide-free bainite[J]. Current Opinion in Solid State&Materials Science,2004,8(3):285-303.
    [3]Hasegawa K,Kawamura K,Urabe T,et al. Effects of microstructure on stretch-flange-formability of 980 MPa grade cold-rolled ultra high strength steel sheets[J]. Transactions of the Iron&Steel Institute of Japan,2004,44(3):603-609.
    [4]Zhao J, Jiang Z. Thermomechanical processing of advanced high strength steels[J]. Progress in Materials Science,2018,94:174-242.
    [5]Matlock D K,Speer J G,Moor E D,et al. Recent developments in advanced high strength sheet steels for automotive applications:An overview[J]. Engineering Science&Technology,An International Journal,2012,15(1):1-12.
    [6]Speer J,Matlock D K,Cooman B C D,et al. Carbon partitioning into austenite after martensite transformation[J]. Acta Materialia,2003,51(9):2611-2622.
    [7]Edmonds D V,He K,Rizzo F C,et al. Quenching and partitioning martensite—A novel steel heat treatment[J]. Materials Science&Engineering A,2006,438(24):25-34.
    [8] Thomas G A,Speer J G,Matlock D K. Quenched and partitioned microstructures produced via, Gleeble simulations of hot-strip mill cooling practices[J]. Metallurgical&Materials Transactions A,2011,42(12):3652-3659.
    [9]Santofimia M J,Zhao L,Sietsma J. Overview of mechanisms involved during the quenching and partitioning process in steels[J].Metallurgical&Materials Transactions A,2011,42(12):3620.
    [10]Hillert M,gren J. On the definitions of paraequilibrium and orthoequilibrium[J]. Scripta Materialia,2004,50(5):697-699.
    [11]Speer J G,Matlock D K,Decooman B C,et al. Comments on“On the definitions of paraequilibrium and orthoequilibrium”by M. Hillert and J.gren,Scripta Materialia,50,697-699(2004)[J]. Scripta Materialia,2005,52(1):83-85.
    [12]Edmonds D V,He K,Rizzo F C,et al. Quenching and partitioning martensite—A novel steel heat treatment[J]. Materials Science&Engineering A,2006,438(24):25-34.
    [13]熊俊珍.碳配分热力学及其在Q&P钢中的应用[D].沈阳:东北大学,2014.Xiong Junzhen. The thermodynamic of carbon partitioning and its application in Q&P steel[D]. Shenyang:Notheasten Univesity,2014.
    [14] Clarke A J,Speer J G,Matlock D K,et al. Influence of carbon partitioning kinetics on final austenite fraction during quenching and partitioning[J]. Scripta Materialia,2009,61(2):149-152.
    [15]Pierce D T,Coughlin D R,Williamson D L,et al. Characterization of transition carbides in quench and partitioned steel microstructures by M9ssbauer spectroscopy and complementary techniques[J]. Acta Materialia,2015,90:417-430.
    [16] Clarke A J,Speer J G,Miller M K,et al. Carbon partitioning to austenite from martensite or bainite during the quench and partition(Q&P)process:A critical assessment[J]. Acta Materialia,2008,56(1):16-22.
    [17]Caballero F G,Miller M K,Clarke A J,et al. Examination of carbon partitioning into austenite during tempering of bainite[J]. Scripta Materialia,2010,63(4):442-445.
    [18]Toji Y,Matsuda H,Herbig M,et al. Atomic-scale analysis of carbon partitioning between martensite and austenite by atom probe tomography and correlative transmission electron microscopy[J]. Acta Materialia,2014,65(6):215-228.
    [19]Hajyakbary F,Sietsma J,Miyamoto G,et al. Interaction of carbon partitioning,carbide precipitation and bainite formation during the Q&P process in a low C steel[J]. Acta Materialia,2016,104:72-83.
    [20]Nishikawa A S,Santofimia M J,Sietsma J,et al. Influence of bainite reaction on the kinetics of carbon redistribution during the quenching and partitioning process[J]. Acta Materialia,2018,142:142-151.
    [21]Knijf D D,Silva E P D,F9jer C,et al. Study of heat treatment parameters and kinetics of quenching and partitioning cycles[J].Materials Science&Technology,2015,31(7):817-828.
    [22]Zheng Yangceng,Zhang Fucheng. Segregation of alloying elements in thermomechanically rolled medium-Mn multiphase steels[J]. Journal of Achievements in Materials&Manufacturing Engineering,2012,55(2):256-264.
    [23]Wei R,Enomoto M,Hadian R. Growth of austenite from as-quenched martensite during intercritical annealing in an Fe-0. 1C-3Mn-1. 5Si alloy[J]. Acta Materialia,2013,61(2):697-707.
    [24]陈连生,张健杨,田亚强,等.预先Mn配分处理对Q&P钢中C配分及残留奥氏体的影响[J].金属学报,2015,51(5):527-536.Chen Liansheng,Zhang Jianyang,Tian Yaqiang,et al. Effect of Mn pre-partitioning on C partitioning and retained austenite of Q&P steels[J]. Acta Metallurgica Sinica,2015,51(5):527-536.
    [25]Dai Zongbiao,Ding Ran,Yang Zhigang,et al. Elucidating the effect of Mn partitioning on interface migration and carbon partitioning during quenching and partitioning of the Fe-C-Mn-Si steels:modeling and experiments,[J]. Acta Materialia,2018,144:666-678.
    [26] Kim B,Sietsma J,Santofimia M J. The role of silicon in carbon partitioning processes in martensite/austenite microstructures[J].Materials&Design,2017,127:336-345.
    [27]Zhu K,Mager C,Huang M,et al. Effect of substitution of Si by Al on the microstructure and mechanical properties of bainitic transformationinduced plasticity steels[J]. Journal of Materials Science&Technology,2017,33(12):1475-1486.
    [28]闫述,刘相华,刘伟杰,等.含Cu低碳钢Q&P工艺处理的组织性能与强化机理[J].金属学报,2013,49(8):917-924.Yan Shu, Liu Xianghua, Liu Weijie, et al. Microstructure,mechanical properties and strengthening mechanisms of a Cu bearing low-carbon steel treated by Q&P process[J]. Acta Metallurgica Sinica,2013,49(8):917-924.
    [29]陈连生,徐静辉,田亚强,等.含Cu低碳钢I&Q&P工艺处理后的组织与性能[J].金属热处理,2016,41(8):76-80.Chen Liansheng,Xu Jinghui,Tian Yaqiang,et al. Microstructure and mechanical properties of a Cu bearing low-carbon steel treated by I&Q&P process[J]. Heat Treatment of Metals,2016,41(8):76-80.
    [30]Hsu T Y, Xu Z Y. Design of structure, composition and heat treatment process for high strength steel[J]. Materials Science Forum,2007,561:2283-2286.
    [31]Zhang K,Liu P,Li W,et al. Ultrahigh strength-ductility steel treated by a novel quenching-partitioning-tempering process[J]. Materials Science&Engineering A,2014,619(4):205-211.
    [32]Hsu T Y, Jin X J, Rong Y H. Strengthening and toughening mechanisms of quenching-partitioning-tempering(Q-P-T)steels[J].Journal of Alloys&Compounds,2013,577(S1):568-571.
    [33]陈连生,张健杨,田亚强,等.配分温度对淬火-配分处理碳-硅-锰钢显微组织和性能的影响[J].机械工程材料,2016,40(2):29-32.Chen Liansheng,Zhang Jianyang,Tian Yaqiang,et al. Effect of partitioning temperature on microstructure and properties of C-Si-Mn steel by quenching and partitioning treatment[J]. Materials for Mechanical Engineering,2016,40(2):29-32.
    [34]万德成,宋卓斐,徐博.终冷温度对直接淬火配分超高强度钢组织与性能的影响[J].金属热处理,2017,40(5):143-146.Wan Decheng,Song Zhuofei,Xu Bo. Effects of interrupt temperature on microstructure and mechanical properties of ultra high strength steel after direct quenching and partitioning[J]. Heat Treatment of Metals,2017,40(5):143-146.
    [35]陈连生,李跃,张明山,等.两相区位错增殖对Mn元素配分及低碳钢贝氏体组织的影响[J].金属学报,2017,53(11):1418-1426.Chen Liansheng, Li Yue, Zhang Mingshan, et al. Effect of intercritical dislocation multiplication to Mn partitioning and microstructure evolution of bainitein low carbon steel[J]. Acta Metallurgica Sinica,2017,53(11):1418-1426.
    [36]Speer J G,Assun92o F C R,Matlock D K,et al. The“quenching and partitioning”process:background and recent progress[J]. Materials Research,2005,8(4):417-423.
    [37]Santofimia M J,Speer J G,Clarke A J,et al. Influence of interface mobility on the evolution of austenite-martensite grain assemblies during annealing[J]. Acta Materialia,2009,57(15):4548-4557.
    [38]Santofimia M J,Sietsma J. Overview of mechanisms involved during the quenching and partitioning process in steels[J]. Metallurgical&Materials Transactions A,2011,42(12):3620-3626.
    [39]Knijf D D,Santofimia M J,Shi H,et al. In situ austenite-martensite interface mobility study during annealing[J]. Acta Materialia,2015,90:161-168.
    [40]Knijf D D,F9jer C,Kestens L A I,et al. Factors influencing the austenite stability during tensile testing of quenching and partitioning steel determined via in-situ electron backscatter diffraction[J].Materials Science&Engineering A,2015,638:219-227.
    [41] Zou D Q,Li S H,He J. Temperature and strain rate dependent deformation induced martensitic transformation and flow behavior of quenching and partitioning steels[J]. Materials Science and Engineering,2017,680:54-63.
    [42]Li Y,Li W,Na M,et al. Effects of hot/cold deformation on the microstructures and mechanical properties of ultra-low carbon medium manganese quenching-partitioning-tempering steels[J]. Acta Materialia,2017,139:96-108.