特定区域密集观测的低轨卫星星座最优设计方法
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Optimal design of low-earth-orbit satellite constellation for regional fast revisit
  • 作者:马剑 ; 孟雅哲 ; 朱小龙 ; 何胜茂 ; 高扬
  • 英文作者:MA Jian;MENG YaZhe;ZHU XiaoLong;HE ShengMao;GAO Yang;Key Lab.of Space Applications, Technology and Engineering Center for Space Utilization, Chinese Academy of Sciences;University of Chinese Academy of Sciences;
  • 关键词:区域覆盖 ; 共星下点轨迹 ; 卫星星座 ; 遗传算法 ; 密集重访
  • 英文关键词:regional coverage;;repeated ground-track;;satellite constellation;;genetic algorithm;;fast-repeated observation
  • 中文刊名:JEXK
  • 英文刊名:Scientia Sinica(Technologica)
  • 机构:中国科学院太空应用重点实验室中国科学院空间应用工程与技术中心;中国科学院大学;
  • 出版日期:2018-02-20
  • 出版单位:中国科学:技术科学
  • 年:2018
  • 期:v.48
  • 基金:国家自然科学基金(批准号:11372311);; 中国科学院空间科学研究院培育项目资助
  • 语种:中文;
  • 页:JEXK201802006
  • 页数:15
  • CN:02
  • ISSN:11-5844/TH
  • 分类号:64-78
摘要
利用较少数目低轨卫星构建星座实现对特定区域的密集观测任务是2016年第8届中国力学学会全国空间轨道设计竞赛乙组题目的主要内容.本文描述了中国科学院空间应用工程与技术中心的设计方法与结果(该设计结果获得本届竞赛一等奖).针对地面特定区域内225个目标点重访周期小于1 h的观测需求,采用了基于多条共星下点轨迹构建卫星星座的设计方法,旨在使得所需要的低轨卫星颗数最少.星座设计方法包括建立"圆形回归轨道-目标点"数据库、全局搜索可观测所有目标点的圆形回归轨道以及共星下点轨迹卫星星座轨道参数求解等3个主要步骤.设计结果验证了该方法在求解较少卫星颗数、地面特定区域多目标点密集观测问题的有效性.该设计方法有望拓展为低轨卫星星座设计的一类通用方法.
        Constructing a constellation using as few satellites as possible is the main content of the Problem B of the 8 th Chinese Trajectory Optimization Competition. This article presents the method and the result(which won the first prize in the competition) of the team from the Technology and Engineering Center for Space Utilization, Chinese Academy of Sciences. In order to establish a low-Earth-orbit constellation that can cover a total of 225 target points on the ground with the revisiting time interval no more than 1 h, we proposed a design method in which the key idea is to place multiple satellites in the same repeated ground-track orbit, and this idea contributes to minimize the number of satellites in the constellation. The process to establish such a constellation consists of three main steps: firstly,constructing the "repeated ground-track orbits vs. target-points" database; secondly, searching for the minimum number of repeated ground-track orbits that can cover all the target points in a repeated ground-track period; thirdly, computing the orbital elements of the required satellites for satisfying the constraint of revisiting time interval less than 1 h. The design result shows that the constellation design method is effective and is expected to extend to be a general method to deal with the problem: constructing a constellation using a minimum number of satellites that covers specified target points on the ground with required revisiting time intervals.
引文
1 Walker J G.Satellite constellations.J British Interplanet Soc,1984,37:559–572
    2 Rider L.Optimized polar constellation for redundant earth coverage.J Astronaut Sci,1985,33:147–161
    3 Adams W S,Rider L.Circular polar constellations providing continuous single or multiple coverage above a specified latitude.J Astronaut Sci,1987,35:155–192
    4 Smith D,Hendrickson R.Mission control for the 48-satellite Globalstar constellation.In:IEEE Military Communications Conference(MILCOM’95 ).San Diego CA,1995.828–832
    5 Fossa C E,Raine S.An overview of the IRIDIUM low earth orbit(LEO)satellite system.In:Proceedings of the IEEE National Aerospace and Electronics Conference(NAECON 1998).Dayton,1998.152–159
    6 Ulybyshev Y.Satellite constellation design for continuous coverage:Short historical survey,current status and new solutions.In:International Workshop on Constellations and Formation Flying,2008
    7 刘刚,吴诗其.区域性星座设计.系统工程与电子技术,2002,24:15–18
    8 魏蛟龙,岑朝辉.基于蚁群算法的区域覆盖卫星星座优化设计.通信学报,2006,8:62–66
    9 王瑞,马兴瑞,李明.采用遗传算法进行区域覆盖卫星星座优化设计.宇航学报,2002,3:24–28
    10 张娟,邓峰岩,和兴锁,等.一种近地回归轨道区域性覆盖星座设计.飞行力学,2004,4:73–76
    11 Lang T J.Optimal Low Earth Orbit Constellations for Continuous Global Coverage.American Astronomical Society,AAS Paper 93–597,Victoria,1993
    12 Ulybyshev Y.Geometric analysis and design method for discontinuous coverage satellite constellations.J Guid Dynam,2014,37:549–557
    13 Hanson J M,Evans M J.Designing good partial coverage satellite constellations.J Astronaut Sci,1992,40:215–239
    14 Sarno S,Graziano M D,D’Errico M.Polar constellations design for discontinuous coverage.Acta Astronaut,2016,127:367–374
    15 吴久银,甘仲明,朱德生.共地面轨迹移动卫星通信星座设计.电子学报,1999,27:88–91
    16 Vallado D A.Fundamentals of Astrodynamics and Applications.3rd ed.Hawthorne:Microcosm Press,2001.782–788
    17 杨维廉.太阳同步轨道的长期演变与控制.航天控制,2008,17:26–30
    18 高扬.电火箭星际航行:技术进展、轨道设计与综合优化.力学学报,2011,6:991–1019
    19 Curtis H D.轨道力学.周建华,徐波,冯全胜,译.北京:科学出版社,2009
    20 Vallado D A.Fundamentals of Astrodynamics and Applications.4th ed.Hawthorne:Microcosm Press,2013
    21 Oliver M,Eberhard Gill.卫星轨道——模型、方法和应用.王家松,祝开建,胡小工,等,译.北京:国防工业出版社,2012
    22 章仁为.卫星轨道姿态动力学与控制.北京:北京航空航天大学出版社,1998
    23 Bazaraa M S,Sherali H D,Shetty C M.Nonlinear Programming Theory and Algorithm.New York:Wiley,1993
    24 Pennoni G.JOCOS:6+1 satellites for global mobile communications,In:Proceedings of IEEE Global Communications Conference(GLOBECOM’94 ).San Francisco:IEEE Press,1994.1369–1374
    25 杨维廉.一种区域性中轨道卫星移动通信星座.中国空间科学技术,2001,21:1–6
    26 Wu T,Wu S,Zhu L.Design of common track satellite constellations for optimal regional coverage.In:International Conference on ITS Telecommunications Proceedings.Chengdu:IEEE,2006.1252–1255
    27 张全新.遗传算法—原理及应用.北京:国防工业出版社,1999
    28 陈国良,王煦法,庄镇泉,等.遗传算法及其应用.北京:人民邮电出版社,1996
    29 刘林.人造地球卫星轨道力学.北京:高等教育出版社,1992