水鸟式无人艇平台的能量补充系统设计与研究
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Design and Analysis of Energy Supplement System of Waterfowl Type Unmanned Vessel Platform
  • 作者:方子帆 ; 覃琳 ; 徐浩 ; 郑小伟 ; 余红昌 ; 谢哲雨 ; 何孔德
  • 英文作者:Fang Zifan;Qin Lin;Xu Hao;Zheng Xiaowei;Yu Hongchang;Xie Zheyu;He Kongde;Hubei Key Laboratory of Hydroelectric Machinery Design & Maintenance,China Three Gorges Univ.;Hubei Provincial Collaborative Innovation Center for New Energy Microgrid,China Three Gorges Univ.;College of Mechanical & Power Engineering,China Three Gorges Univ.;
  • 关键词:水鸟式无人艇平台 ; 能量补充系统 ; 转换效率 ; 波浪能
  • 英文关键词:waterfowl-type unmanned vessel platform;;energy supplement system;;conversion efficiency;;wave energy
  • 中文刊名:WHYC
  • 英文刊名:Journal of China Three Gorges University(Natural Sciences)
  • 机构:三峡大学水电机械设备设计与维护湖北省重点实验室;三峡大学新能源微电网湖北省协同创新中心;三峡大学机械与动力学院;
  • 出版日期:2019-06-25 08:56
  • 出版单位:三峡大学学报(自然科学版)
  • 年:2019
  • 期:v.41;No.169
  • 基金:国家自然科学基金项目(51875314、51775307);; 水电机械设备设计与维护湖北省重点实验室开放基金项目(2018KJX05)
  • 语种:中文;
  • 页:WHYC201904015
  • 页数:6
  • CN:04
  • ISSN:42-1735/TV
  • 分类号:81-86
摘要
针对海洋中无人艇平台长时间远距离航行的能源供给需求,提出了一种由波浪能采集机构和液压转换系统组成的水鸟式无人艇平台的能量补充系统,设计了四连杆采集机构和随机能量转换系统,利用Matlab软件计算了波浪对浮子的作用力和无人艇平台的垂直作用力.根据能量流转换过程,建立了系统的Adams与AMESim联合仿真模型.对不同海况下系统的能量转换效率进行了仿真研究.研究结果表明该装置可以实现系统持续补充能量,为解决海洋中无人艇平台的持续能量供给问题提供了一种参考方案.
        For the energy supply requirements of marine unmanned vessel platform's long-distance navigation, a waterfowl-type unmanned vessel platform energy supplement system consisting a wave energy collecting mechanism and a hydraulic conversion system is put forward. A four-link acquisition mechanism and a random energy conversion system are designed. The wave force on the float and the vertical wave force on the unmanned vessel platform are calculated by Matlab software. Based on the energy flow conversion process, the Adams and AMESim co-simulation model of the system is established. The energy conversion efficiency of the system under different sea conditions is calculated. The research results show that it can realize the continuous energy supplement and provides a reference solution for solving the problem of continuous energy supply in marine unmanned vessel platforms.
引文
[1] 肖曦,摆念宗,康庆,等.波浪发电系统发展及直驱式波浪发电系统研究综述[J].电工技术学报,2014,29(3):1-11.
    [2] Mckinney,William,J.Delaurier.The Wingmill:an Oscillating Wing Windmill[J].Journal of Energy,1981,5(2):109-115.
    [3] Mohammad-Reza Alam.A Flexible Seafloor Carpet for High-performance Wave Energy Extraction[C] //ASME 31st Int.Conf.on Ocean,Offshore and Arctic Engineering,America:American Society of Mechanical Engineers,2012:839-846.
    [4] Hansen Rico H,Kramer M M,et al.Discrete Displacement Hydraulic Power Take-Off System for the Wavestar Wave Energy Converter[J].Energies,2013,6(8):4001-4044.
    [5] 邓见,戴滨,邵雪明,等.全被动式海流能量采集系统水动力学机理[J].浙江大学学报:工学版,2013,47(10):1784-1789.
    [6] 盛松伟,张亚群,王坤林,等.鹰式波浪能发电装置发电系统研究[J].可再生能源,2015,33(9):1422-1426.
    [7] 谢永慧,姜伟,吕坤,等.振荡扑翼流场能量采集研究进展[J].中国电机工程学报,2016,36(20):5564-5574,5733.
    [8] 郑崇伟,游小宝,潘静,等.钓鱼岛、黄岩岛海域风能及波浪能开发环境分析[J].海洋预报,2014,31(1):49-57.
    [9] 方子帆,马振豪,高术,等.多节漂浮型机械式波浪能发电装置的研制[J].太阳能学报,2015,36(10):2518-2523.
    [10] Dean C.Karnopp,Donald L.Margolis,Ronald C.Rosenberg.系统动力学:机电系统的建模与仿真[M].4版.刘玉庆,等译.北京:国防工业出版社,2012.
    [11] 肖岱宗.AMESim仿真技术及其在液压元件设计和性能分析中的应用[J].舰船科学技术,2007(S1):142-145.
    [12] 朱德泉.基于联合仿真的机电液一体化系统优化设计方法研究[D].合肥:中国科学技术大学,2012.