一种用于燃料电池含水量诊断的新型压力降模型
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:A New Pressure Drop Model for the Diagnosis of Water Content in Fuel Cells
  • 作者:单希壮 ; 杨月华 ; 马天才 ; 杨彦博 ; 林维康
  • 英文作者:Shan Xizhuang;Yang Yuehua;Ma Tiancai;Yang Yanbo;Lin Weikang;Tongji University;
  • 关键词:燃料电池 ; 水管理 ; 故障诊断 ; 压力降
  • 英文关键词:Fuel cell;;Water management;;Fault diagnosis;;Pressure drop
  • 中文刊名:QCJS
  • 英文刊名:Automobile Technology
  • 机构:同济大学;
  • 出版日期:2019-01-24
  • 出版单位:汽车技术
  • 年:2019
  • 期:No.520
  • 基金:国家重点研发计划项目(面向重卡用大功率燃料电池系统集成与控制)
  • 语种:中文;
  • 页:QCJS201901003
  • 页数:6
  • CN:01
  • ISSN:22-1113/U
  • 分类号:11-16
摘要
为优化基于压力降的含水量诊断方法中的压力降基准,构建了一种燃料电池阳极侧单相流压力降模型,在建模过程中采用童景山的粘度计算方法以提高压力降模型的精度,同时该模型通过电流与气体流量解耦的方式扩大了压力降方法的应用范围。通过试验对模型进行了验证,结果表明,在不同进气压力、输出电流与工作温度的条件下,试验数据与模型仿真结果基本吻合,仅在高温条件下,试验数据与仿真结果出现了较大误差。
        A fuel cell single-phase flow pressure drop model was constructed to optimize pressure drop based on pressure drop method of water content diagnosis. In the process of pressure drop modeling, Tong Jingshan's viscosity calculation method was utilized to improve the model accuracy. Moreover, the model with decoupling of current and gas flow can also be extended for the application range of pressure drop method. Finally a set of tests were carried out to prove the veracity of the model. The results show that the model simulations are basically consistent with the experimental data under different inlet pressure, output current and working temperature. A large error between the test data and the simulation results emerges only under high temperature conditions.
引文
[1] Pei P, Li Y, Xu H, et al. A Review on Water Fault Diagnosis of PEMFC Associated with the Pressure Drop[J]. Applied Energy, 2016, 173:366-385.
    [2] Zhang L, Bi H T, Wilkinson D P, et al. Gas–Liquid TwoPhase Flow Patterns in Parallel Channels for Fuel Cells[J].Journal of Power Sources, 2008, 183(2):643-650.
    [3] Barbir F, Gorgun H, Wang X. Relationship Between Pressure Drop and Cell Resistance as a Diagnostic Tool for PEM Fuel Cells[J]. Journal of Power Sources, 2005, 141(1):96-101.
    [4] Ma H P, Zhang H M, Hu J, et al. Diagnostic Tool to Detect Liquid Water Removal in the Cathode Channels of Proton Exchange Membrane Fuel Cells[J]. Journal of Power Sources, 2006, 162(1):469-473.
    [5]宋满存.质子交换膜燃料电池水淹过程研究及故障诊断系统设计[D].北京:清华大学, 2013.
    [6] Steiner N Y, Candusso D, Hissel D, et al. Model-BasedDiagnosis for Proton Exchange Membrane Fuel Cells[J].Mathematics&Computers in Simulation, 2010, 81(2):158-170.
    [7] Steiner N Y, Hissel D, Mo?otéguy P, et al. Diagnosis ofPolymer Electrolyte Fuel Cells Failure Modes(Flooding&Drying out)by Neural Networks Modeling[J]. InternationalJournal of Hydrogen Energy, 2011, 36(4):3067-3075.
    [8] Lu Z, Kandlikar S G, Rath C, et al. Water ManagementStudies in PEM Fuel Cells, Part II:Ex Situ Investigation ofFlow Maldistribution, Pressure Drop and Two-Phase FlowPattern in Gas Channels[J]. International Journal ofHydrogen Energy, 2009, 34(8):3445-3456.
    [9] Yuan X, Wang H, Jian C S, et al. AC Impedance Technique in PEM Fuel Cell Diagnosis—A Review[J]. International Journal of Hydrogen Energy, 2007, 32(17):4365-4380.
    [10] Freire T J P, Gonzalez E R. Effect of Membrane Characteristics and Humidification Conditions on the Impedance Response of Polymer Electrolyte Fuel Cells[J].Journal of Electroanalytical Chemistry, 2001, 503(1):57-68.
    [11] Maruo T, Toida M, Ogawa T, et al. Development of Fuel Cell System Control for Sub-Zero Ambient Conditions[C]//SAE World Congress Experience, 2017.
    [12] Dotelli G, Ferrero R, Stampino P G, et al. Inverter Ripple as a Diagnostic Tool for Ohmic Resistance Measurements on PEM Fuel Cells[C]//IEEE International Workshop on Applied Measurements for Power Systems. IEEE, 2013:156-161.
    [13] Hinaje M, Sadli I, Martin J P, et al. Online Humidification Diagnosis of a PEMFC Using a Static DC-DC Converter[J].International Journal of Hydrogen Energy, 2009, 34(6):2718-2723.
    [14] Pei P, Ouyang M, Feng W, et al. Hydrogen Pressure Drop Characteristics in a Fuel Cell Stack[J]. International Journal of Hydrogen Energy, 2006, 31(3):371-377.
    [15] Grimm M, See E J, Kandlikar S G. Modeling Gas Flow in PEMFC Channels:Part I-Flow Pattern Transitions and Pressure Drop in a Simulated Ex Situ Channel with Uniform Water Injection through the GDL[J]. International Journal of Hydrogen Energy, 2012, 37(17):12489-12503.
    [16] See E J, Kandlikar S G. A Two-Phase Pressure Drop Model Incorporating Local Water Balance and Reactant Consumption in PEM Fuel Cell Gas Channels[J]. Ecs Transactions, 2013, 50(2):99-111.
    [17] Kandlikar S, See E, Banerjee R. Modeling Two-Phase Pressure Drop Along PEM Fuel Cell Reactant Channels[J].Journal of the Electrochemical Society, 2015, 162(7):F772-F782.
    [18]童景山.气体混合物及液体混合物的粘度和导热系数[J].化学工程, 1977(6):66-84.
    [19] Anderson R, Eggleton E, Zhang L. Development of TwoPhase Flow Regime Specific Pressure Drop Models for Proton Exchange Membrane Fuel Cells[J]. International Journal of Hydrogen Energy, 2015, 40(2):1173-1185.
    [20] Ferreira R B, Falc?o D S, Oliveira V B, et al. Numerical Simulations of Two-Phase Flow in an Anode Gas Channel of a Proton Exchange Membrane Fuel Cell[J]. Energy,2015, 82:619-628.