基于一维随机硅光栅的石墨烯表面等离子体安德森局域
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Graphene Surface Plasmon Anderson Localization Based on One-dimensional Random Si Gratings
  • 作者:陆梦佳 ; 王跃科 ; 姚志飞 ; 张春阳
  • 英文作者:LU Meng-jia;WANG Yue-ke;YAO Zhi-fei;ZHANG Chun-yang;Department of Photoelectric Information Science and Engineering & Jiangsu Province Research Center of Light Industrial Optoelectronic Engineering and Technology,School of Science,Jiangnan University;
  • 关键词:表面等离子体 ; 光栅 ; 传感器 ; 调制器
  • 英文关键词:Graphene;;Surface plasmons;;Gratings;;Sensors;;Modulators
  • 中文刊名:GZXB
  • 英文刊名:Acta Photonica Sinica
  • 机构:江南大学理学院光电信息科学与工程系江苏省轻工光电工程技术研究中心;
  • 出版日期:2019-01-24 09:26
  • 出版单位:光子学报
  • 年:2019
  • 期:v.48
  • 基金:国家自然科学基金(No.11404143);; 教育部归国留学基金(No.1144130201150080);; 江苏省研究生实践创新项目(No.SJCX17_0494)~~
  • 语种:中文;
  • 页:GZXB201904006
  • 页数:7
  • CN:04
  • ISSN:61-1235/O4
  • 分类号:35-41
摘要
提出了一种中红外波段下探究表面等离子体在石墨烯与硅光栅混合结构中传输安德森局域的方法.在石墨烯片下设计一维随机硅光栅结构来实现石墨烯表面等离子体随机硅光栅.通过调节石墨烯的费米能级来改变由硅光栅的无序引起的石墨烯表面等离子体安德森局域的共振波长.当费米能级是0.6eV时,局域石墨烯表面等离子体在随机硅光栅结构中的场强强度比在周期性硅光栅结构中大70倍.该结构有望应用于可调集成滤波器,宽带调制器以及等离子体传感器等.
        A novel method was investigated to achieve in-plane graphene surface plasmon anderson localization in mid-infrared region by transferring agraphene sheet on the one-dimensional random silicon gratings.By adjusting the Fermi level of graphene,the resonance wavelengths of anderson localizated graphene surface plasmon caused by its random nature can be easily tuned.The field intenstiy of localizated graphene surface plasmon is higher than the corresponding one in the periodic silicon gratings70 times when the Fermi level is set to be 0.6 eV.The structure proposed can be appiled to the tunable integrated filters,broadband modulators and plasmonic sensors.
引文
[1]BARNES W L,DEREUX A,EBBESEN T W.Surface plasmon subwavelength optics[J].Nature,2003,424(14):824-830.
    [2]JIANG Ya-lan,WANG Ji-cheng,WANG Yue-ke,et al.A MIM surface plasmon T-splitter based on a stub structure[J].Acta Optica Sinica,2014,43(9):0923002.蒋亚兰,王继成,王跃科,等.一种带有支节的MIM型表面等离子体T型分束器[J].光子学报,2014,43(9):0923002.
    [3]OZBAY E.Plasmonic:merging photonics and electrics at nanoscale dimensions[J].Science,2006,311(5758):189-193.
    [4]GEIM A K,NOVOSELOV K S.The rise of graphene[J].Nature Material,2007,6(9):183-191.
    [5]KOPPENS F H L,CHANG D E,JAVIER G D A F.Graphene plasmonics:aplantform for strong light-matter interactions[J].Nano Letters,2011,11(8):3370-3377.
    [6]ZHANG Peng-yue,ZHANG Jie,ZHANG Xiao-lei,et al.Preparation and experimental research of graphene coated bimetallic nanoparticles used as substrates[J].Chinese Journal of Lasers,2016,43(3):156-162.张朋月,张洁,张晓蕾,等.石墨烯/双金属纳米颗粒基底的制备及实验研究[J].中国激光,2016,43(3):156-162.
    [7]NETOA H C,GUINEA F,PERES N M R,et al.The electronic properties of graphene[J].Reviews of Modern Physics,2009,81(1):109-162.
    [8]LUOX,QIU T,LU W,et al.Plasmons in graphene:recent progress and applications[J].Materials Science Engineering:R:Reports,2013,74(11):351-376.
    [9]GRIGORENKO A N,POLINI M,NOVOSELOV K S.Graphene plasmonics[J].Nature Photonics,2012,6(11):749-758.
    [10]CHEN J N,BADIOLI M,AIONSO-GONZALEZ P,et al.Optical nanoimaging of gate-tunable graphene plasmons[J].Nature,2012,487(7405):77.
    [11]FEI Z,RODIN A S,ANDREEV G O,et al.Gate-tuning of graphene plasmons revealed by infrared nano-imaging[J].Nature,2012,487:82.
    [12]TAO J,YU X C,HU B,et al.Graphene-based tunable plasmonic Bragg reflector with a broad bandwidth[J].Optics Letters,2014,39(2):271-274.
    [13]CHEN Z H,TAN Q L,LAO J,et al.Reconfigurable and tunable flat graphene photonic crystal circuits[J].Nanoscale,2015,7(25):10912-10917.
    [14]HE M D,WANG K J,WANG L,et al.Graphene-based terahertz tunable plasmonic directional coupler[J].Applied Physics Letters,2014,105(8):189.
    [15]RTING F.Plasmons in disordered nanoparticle chains:localization and transport[J].Physical Review B,2011,83(11):1127-1134.
    [16]RTING F,HUIDOBRO P A,GARCA-VIDAL F J.Emergence of Anderson localization in plasmonic waveguides[J].Optics Letters,2011,36(22):4341-4343.
    [17]XUY,DENG H.Tunable Anderson localization in disorder graphene sheet arrays[J].Optics Letters,2016,41(3):567-570.
    [18]CHAVES A J,PERES N M R,PINHEIRO F A.Anderson localization of light in disordered superlattices containing graphene layers[J].Physical Review B,2015,92(19):195425.
    [19]WANG W,XIAO S,MORTENSEN N A.Localized plasmons in bilayer graphene nanodisks[J].Physical Review B,2016,93(16):165407.
    [20]SANI M,FARZAD M H.Anderson localization of surface plasmons in monolayer graphene[J].Physical Review B,2018,97(8):085406.
    [21]FALKOVSKY L A,PERSHOGUBA S S.Optical far-infrared properties of a graphene monolayer and multilayer[J].Physical Review B,2007,76(15):153410.
    [22]FALKOVSKY L A.Optical properties of graphene[C].Journal of Physics:Conference Series,IOP Publishing,2008,129(1):012004.
    [23]LU H,ZENG C,ZHANG Q,et al.Graphene-based active slow surface plasmon polaritons[J].Scientific Reports,2015,5:8443.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700