Ce_(0.8)Sm_(0.2)O_(2-δ)-BaZr_(0.9)Y_(0.1)O_(3-δ)复合电解质的微观表征与电性能分析(英文)
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Mircostructural and electrical properties of Ce_(0.8)Sm_(0.2)O_(2-δ)-BaZr_(0.9)Y_(0.1)O_(3-δ) composite electrolyte
  • 作者:陈优 ; 刘月鑫 ; 李莎 ; 王延忠
  • 英文作者:CHEN You;LIU Yue-xin;LI Sha;WANG Yan-zhong;College of Material Science and Engineering, North University of China;
  • 关键词:固体电解质 ; 质子导体 ; 固体氧化物燃料电池 ; 电传导
  • 英文关键词:solid electrolyte;;proton conductor;;solid oxide fuel cells;;electrical conduction
  • 中文刊名:CSKX
  • 英文刊名:测试科学与仪器(英文版)
  • 机构:中北大学材料科学与工程学院;
  • 出版日期:2019-03-15
  • 出版单位:Journal of Measurement Science and Instrumentation
  • 年:2019
  • 期:v.10;No.37
  • 基金:National Natural Science Foundation of China(No.51102216);; Program for the Innovative Talents of Higher Learning Institutions of Shanxi Province;; Natural Science Foundation for Young Scientists of Shanxi Province(No.2012021021-1);; Shanxi Scholarship Council of China(No.2012-071)
  • 语种:英文;
  • 页:CSKX201901013
  • 页数:6
  • CN:01
  • ISSN:14-1357/TH
  • 分类号:95-100
摘要
复合电解质(1-x)BaZr_(0.9)Y_(0.1)O_(3-δ)(简称BZY)-xCe_(0.8)Sm_(0.2)O_(2-δ)(SDC,x=0.1,0.3,0.5,0.7)是通过凝胶聚合理论和球磨处理共同制备的。X射线衍射分析显示, BZY与SDC的混合物所形成的复合电解质仅以晶相结构存在。在这种复合电解质中,随着SDC的含量增长,材料的相对密度、晶粒尺寸和总导电性将会显著提升。10%的BZY和90%的SDC组成的电解质为600℃湿润空气中达到最大电导率,其大小为2×10~2 S·cm~(-1),接近SDC的电导率。
        The(1-x)BaZr_(0.9)Y_(0.1)O_(3-δ)(BZY)-xCe_(0.8)Sm_(0.2)O_2-δ(SDC, x=0.1, 0.3, 0.5 and 0.7) composite electrolytes were prepared by combining a gel polymerization method with a ball milling. X-ray diffraction(XRD) patterns show the mixture of BZY and SDC is only crystalline phase as the composite electrolyte. The relative density, grain size and total conductivity of composite electrolytes increase significantly with the increase of SDC content. The maximum conductivity of 0.1 BZY-0.9 SDC reaches 2×10~2 S·cm~(-1) at 600 ℃ in wet air, which is close to the conductivity of SDC.
引文
[1] Morales M, Navarro M E, Segarra M, et al. Processing of graded anode-supported micro-tubular SOFCs based on samaria-doped ceria via gel-casting and spray-coating. Ceramics International, 2012, 38(5): 3713-3722.
    [2] Zhan Z, Wen T L, Tu H G, et al. AC impedance investigation of samarium-Doped ceria. Journal of Electrochemistry Society, 2001, 148(5): A427-A432.
    [3] Lu C, Worrell W L, Gorte R J, et al. SOFCs for direct oxidation of hydrocarbon fuels with samaria-doped ceria electrolyte. Journal of The Electrochemical Society, 2003, 150(3): A354-A358.
    [4] Huang K Q, Feng M, Goodenough J B, et al. Synthesis and electrical properties of dense Ce0.9Gd0.1O1.95 ceramics. Journal of the Amerian Ceramic Society, 1998, 81(2): 357-362.
    [5] Wang S R, Kobayashi T, Dokiya M, et al. Electrical and ionic conductivity of Gd-doped ceria. Journal of . Electrochemical Society, 2000, 147(10): 3606-3609.
    [6] Kreuer K D, Paddison S J, Spohr E, et al. Transport in proton conductors for fuel-cell applications: simulations, elementary reactions, and phenomenology. Chemical Reviews, 2004, 104(10): 4637-4678.
    [7] Iwahara H, Esaka T, Uchida H, et al. Proton conduction in sintered oxides and its application to steam electrolysis for hydrogen production. Solid State Ionics, 1981, (3/4): 359-363.
    [8] Iguchi F, Nagao Y, Sata N, et al. Proton concentration in 15 mol% Y-doped BaZrO3 proton conductors prepared at various temperatures. Solid State Ionics, 2011, 192(1): 97-100.
    [9] Iguchi F, Sata N, Tsurui T, et al. Microstructures and grain boundary conductivity of BaZr1-xYxO3 (x=0.05, 0.10, 0.15) ceramics. Solid State Ionics, 2007, 178(7): 691-695.
    [10] Matsumoto H, Nomura I, Okada S, et al. Intermediate-temperature solid oxide fuel cells using perovskite-type oxide based on barium cerate. Solid State Ionics, 2008, 179(27): 1486-1489.
    [11] Ryu K H, Haile S M , et al. Chemical stability and proton conductivity of doped BaCeO3-BaZrO3 solid solutions. Solid State Ionics, 1999, 125(1): 355-367.
    [12] Ahmed I, Eriksson S G, Ahlberg E, et al. Structural study and proton conductivity in Yb-doped BaZrO3. Solid State Ionics, 2007, 178(7): 515-520.
    [13] Sun Z Q, Fabbri E, Bi L, et al. Lowering grain boundary resistance of BaZr0.8Y0.2O3-δ with LiNO3 sintering-aid improves proton conductivity for fuel cell operation. Physical Chemistry Chemical Physics Pccp , 2010, 13(17): 7692-7700.
    [14] Carvalho R G, Fernandes A J S, Silva R F, et al. Directional solidification of ZrO2-BaZrO3 composites with mixed protonic-oxide ionic conductivity. Solid State Ionics, 2014, 262: 654-658.
    [15] Zhu B, Liu X R, Schober T, et al. Novel hybrid conductors based on doped ceria and BCY20 for ITSOFC applications. Electrochemistry Communications, 2004, 6(4): 378-383.
    [16] Khandelwal M, Venkatasubramanian A, Prasanna T R S, et al. Correlation between microstructure and electrical conductivity in composite electrolytes containing Gd-doped ceria and Gd-doped barium cerate. Journal of the European Ceramic Society, 2011, 31(4): 559-568.
    [17] Venkatasubramanian A, Gopalan P, Prasanna T R S, et al. Synthesis and characterization of electrolytes based on BaO-CeO2-GdO1.5 system for intermediate temperature solid oxide fuel cells. International Journal of Hydrogen Energy, 2010, 35(10): 4597-4605.
    [18] Sun W, Jiang Y, Wang Y, et al. A novel electronic current-blocked stable mixed ionic conductor for solid oxide fuel cells. Journal of Power Sources, 2011, 196(1): 62-68.
    [19] Medvedev D, Maragou V, Pikalova E, et al. Novel composite solid state electrolytes on the base of BaCeO3 and CeO2 for intermediate temperature electrochemical devices. Journal of Power Sources, 2013, 221: 217-227.
    [20] Liu M F, Ding D, Bai Y, et al. An efficient SOFC based on samaria-doped ceria (SDC) electrolyte. Journal of The Electrochemical Society, 2012, 159(6): B661-B665.
    [21] Lin D, Wang Q H, Peng K P, et al. Phase formation and properties of composite electrolyte BaCe0.8Y0.2O3-δ-Ce0.8Gd0.2O1.9 for intermediate temperature solid oxide fuel cells. Journal of Power Sources, 2012, 205: 100-107.
    [22] Huang J B, Zhang L, Wang C, et al. CYO-BZCYO composites with enhanced proton conductivity: candidate electrolytes for low-temperature solid oxide fuel cells. International Journal of Hydrogen Energy, 2012, 37(17): 13044-13052.
    [23] Li B, Liu S F, Liu X M, et al. Electrical properties of SDC-BCY composite electrolytes for intermediate temperature solid oxide fuel cell. International Jouranl of Hydrogen Energy, 2014, 39(26): 14376-14380.
    [24] Lacz A, Grzesik K, Pasierb P, et al. Electrical properties of BaCeO3-based composite protonic conductors. Journal of Power Sources, 2015, 279: 80-87.
    [25] Savaniu C D, CanalesV J, Irvine J T S, Investigation of proton conducting BaZr0.9Y0.1O2.95 ∶BaCe0.9Y0.1O2.95 core:shell structures. Journal of Material. Chemistry, 2005, 15(5): 598-603.
    [26] Khani Z, Taillades M L, Taillades G, et al. Preparation of nanoparticle coreshell electrolyte materials for proton ceramic fuel cells. Chemistr of Material, 2010, 22(3): 1119-1125.
    [27] Ahmed I, Eriksson S G, Ahlberg E, et al. Influence of microstructure on electrical properties in BaZr0.5In0.5O3-δ proton conductor. Solid State Ionics, 2008, 179(21-26): 1155-1160.
    [28] Kim G, Lee N, Chang H, et al. Various synthesis methods of aliovalent-doped ceria and their electrical properties for intermediate temperature solid oxide electrolytes. International Journal of Hydrogen Energy, 2013, 38(3): 1571-1587.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700