基于MODIS的青藏高原逐日无云积雪产品算法
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Cloud removing algorithm for the daily cloud free MODIS-based snow cover product over the Tibetan Plateau
  • 作者:邱玉宝 ; 张欢 ; 除多 ; 张雪成 ; 于小淇 ; 郑照军
  • 英文作者:QIU Yubao;ZHANG Huan;Chuduo;ZHANG Xuecheng;YU Xiaoqi;ZHENG Zhaojun;Key Laboratory of Digital Earth Science,Institute of Remote Sensing and Digital Earth,Chinese Academy of Sciences;Beijing Watertek Fu Xi Big Data Technology Co .,Ltd;Tibetan Institute of Atmospheric Environment and Science;Xi'an University of Science and Technology;National Satellite Meteorological Center;
  • 关键词:青藏高原 ; 积雪遥感 ; 去云算法 ; MODIS ; 逐日无云雪盖产品
  • 英文关键词:Tibetan Plateau;;remote sensing of snow cover;;MODIS;;cloud removing algorithm;;daily cloud-free snow cover products
  • 中文刊名:BCDT
  • 英文刊名:Journal of Glaciology and Geocryology
  • 机构:中国科学院遥感与数字地球研究所数字地球重点实验室;北京旋极伏羲大数据技术有限公司;西藏高原大气环境科学研究所;西安科技大学;中国气象局国家卫星中心;
  • 出版日期:2017-06-15
  • 出版单位:冰川冻土
  • 年:2017
  • 期:v.39
  • 基金:国家自然科学基金项目(41371351);; 中国科学院国际合作局对外合作重点项目(NO.131CllKYSB20160061);; 公益性(气象)行业专项“青藏高原遥感积雪气候数据集建设”(GYHY201206040)资助
  • 语种:中文;
  • 页:BCDT201703007
  • 页数:12
  • CN:03
  • ISSN:62-1072/P
  • 分类号:65-76
摘要
青藏高原积雪对高亚洲地区水和能量循环起着重要的反馈和调节作用,其变化影响着融雪性河流流量,对下游水资源和经济活动具有重要影响。中分辨率成像光谱仪(MODIS)具有较高的时空分辨率,被广泛应用于积雪遥感动态监测,然而光学遥感积雪受云层影响严重,且青藏高原地区水汽分布不均,局地对流活跃,积雪的赋存时间变化快,这给高原地区逐日积雪监测及其气候学制图带来挑战。在考虑青藏高原地形和积雪分布特征情况下,结合现有的云覆盖下积雪判别算法,采用8个不同方法的组合,逐步实现MODIS逐日无云积雪算法。选取2009年10月1日-2011年4月30日两个积雪季为研究期,并采用145个地面台站观测雪深数据对去云算法各步骤过程开展精度验证,结果表明:当积雪深度>3 cm时,逐日无云积雪产品总分类精度达到96.6%,积雪分类精度达83%,积雪判对概率(召回率)达到89.0%,算法可实现青藏高原地区逐日无云积雪动态监测和积雪覆盖气候学数据重建,对高亚洲地区的水、生态和灾害等全球环境变化影响研究具有重要的意义。
        Snow cover on the Tibetan Plateau plays an important role in feedback and regulating to water and energy cycles of the High Asia.Snow melt supplies river runoff,which has an important influence on the social and economic development for the downstream areas.Medium resolution imaging spectrometer(MODIS) is widely used in dynamic remote sensing to monitor snow cover variation,because of its high temporal and spatial resolution.However,optical remote sensing snow cover is seriously affected by cloudy weather.Especially,water vapor over the plateau is low and inhomogeneous,with active convection,resulting in snow cover rapid changing.All the problems bring a challenge to the daily cloud-free snow monitoring and snow climatology mapping in the plateau.Considering the local terrain and snow cover characteristics in the Tibetan Plateau,in this study,based on the existing cloud removal algorithms,gradually controlling cloudage,the daily cloud-free MODIS snow cover algorithm has been carried out.The snow depth records from 145 ground stations for two snow seasons,from 1st October,2009 through 30 th April,2011,are used to qualify the accuracies of various algorithm processes.The qualifying show that when snow depth is above 3 cm,the total classification accuracy of daily cloud-free snow products is 96.6%,snow classification accuracy is 83.0% and the recall rate is 89%.The new cloud removal process is proved having high precision and is suitable for daily dynamic monitoring snow cover.It provides a new way for reconstructing snow climatology data over the Tibetan Plateau.It is useful to study global environmental change,such as water,ecology,disaster and their impacts on the High Asia.
引文
[1]Bin Chanjia,Qiu Yubao,Shi Lijuan,et al.Comparative validation of snow depth algorithms using AMSR-E passive microwave data in China[J].Journal of Glaciology and Geocryology,2013.35(4):801-813.[宾婵佳,邱玉宝,石利娟,等.我国主要积雪区AMSR-E被动微波雪深算法对比验证研究[J].冰川冻土,2013,35(4):801-813.]
    [2]Liu Yimin,Qian Zheng'an.Influence of sea-land thermal contrast on the climate change in China[M].Beijing:China Meteorological Press,2005.[刘屹岷,钱正安.海-陆热力差异对我国气候变化的影响[M].北京:气象出版社,2005.]
    [3]Barnett T P,Dümenil L,Schlese U,et al.The effect of Eurasian snow cover on regional and global climate variations[J].Journal of the Atmospheric Sciences,1989,46(5):661-686.
    [4]Qiu Yubao,Guo Huadong,Bin Chanjia,et al.Comparasion on snow depth algorithms over China using AMSR-E passive microwave remote sensing[C]//Geoscience and Remote Sensing Symposium(IGARSS),2014 IEEE International.IEEE,2014:851-854.
    [5]Blanford H F.On the connexion of the Himalaya snowfall with dry winds and seasons of drought in India[J].Proceedings of the Royal Society of London,1884,37(232/233/234):3-22.
    [6]Laba Zhuoma,Qiu Yubao,Cidan Basang,et al.The validation of MODIS daily snow cover products after cloud removal in Tibet Autonomous Region[J].Journal of Glaciology and Geocryology,2016,38(1):159-169.[拉巴卓玛,邱玉宝,次旦巴桑,等.西藏高原MODIS每日积雪产品去云算法过程对比验证研究[J].冰川冻土,2016,38(1):159-169.]
    [7]Yan Yuna,Che Tao,Li Hongyi,et al.Using snow remote sensing data to improve the simulation accuracy of spring snow melt runoff:take Babao River basin as an example[J].Journal of Glaciology and Geocryology,2016,38(1):211-221.[闫玉娜,车涛,李弘毅,等.使用积雪遥感面积数据改善山区春季融雪径流模拟精度[J].冰川冻土,2016,38(1):211-221.]
    [8]Chu Duo,Yang Yong,Luobu Jiancan,et al.The variations of snow cover days over the Tibetan Plateau during 1981-2010[J].Journal of Glaciology and Geocryology,2015,37(6):1461-1472.[除多,杨勇,罗布坚参,等.1981-2010年青藏高原积雪日数时空变化特征分析[J].冰川冻土,2015,37(6):1461-1472.]
    [9]Dankers R,De Jong S M.Monitoring snow-cover dynamics in Northern Fennoscandia with SPOT VEGETATION images[J].International Journal of Remote Sensing,2004,25(15):2933-2949.
    [10]Hendrix S D.Variation in seed weight and its effects on germination in Pastinaca sativa L.(Umbelliferae)[J].American Journal of Botany,1984:795-802.
    [11]Xiao X,Zhang Q,Boles S,et al.Mapping snow cover in the pan-Arctic zone,using multi-year(1998-2001)images from optical VEGETATION sensor[J].International Journal of Remote Sensing,2004,25(24):5731-5744.
    [12]Hall D K,Riggs G A,Salomonson V V,et al.MODIS snowcover products[J].Remote sensing of Environment,2002,83(1):181-194.
    [13]Grody N C,Basist A N.Global identification of snowcover using SSM/I measurements[J].IEEE Transactions on geoscience and remote sensing,1996,34(1):237-249.
    [14]Che Tao,Li Xin,Jin Rui,et al.Snow depth derived from passive microwave remote-sensing data in China[J].Annals of Glaciology,2008,49(1):145-154.
    [15]Feng Qisheng,Zhang Xuetong,Liang Tiangang.Dynamic monitoring of snow cover based on MOD10A1 and AMSR-E in the north of Xinjiang Province,China[J].Acta Prataculturae Sinica,2009,18(1):125-133.[冯琦胜,张学通,梁天刚.基于MOD10A1和AMSR-E的北疆牧区积雪动态监测研究[J].草业学报,2009,18(1):125-133.]
    [16]Lu Xinyu,Wang Xiuqin,Cui Caixia et al.Snow depth retrieval based on AMSR-E data in Northern Xinjiang region,China[J].Journal of Glaciology and Geocryology,2013,35(1):40-47.[卢新玉,王秀琴,崔彩霞,等.基于AMSR-E的北疆地区积雪深度反演[J].冰川冻土,2013,35(1):40-47.]
    [17]Dai Liyun,Che Tao,Wang Jian,et al.Snow depth and snow water equivalent estimation from AMSR-E data based on a priori snow characteristics in Xinjiang,China[J].Remote Sensing of Environment,2012,127:14-29.
    [18]Hall D K,Riggs G A.Accuracy assessment of the MODIS snow products[J].Hydrological Processes,2007,21(12):1534-1547.
    [19]Gafurov A,B rdossy A.Cloud removal methodology from MODISsnow cover product[J].Hydrology and Earth System Sciences,2009,13(7):1361.
    [20]Parajka J,Bl schl G.Spatio‐temporal combination of MODISimages-potential for snow cover mapping[J].Water Resources Research,2008,44(3).
    [21]Gao Yang,Xie Hongjie,Yao Tandong,et al.Integrated assessment on multi-temporal and multi-sensor combinations for reducing cloud obscuration of MODIS snow cover products of the Pacific Northwest USA[J].Remote Sensing of Environment,2010,114(8):1662-1675.
    [22]Paudel K P,Andersen P.Monitoring snow cover variability in an agropastoral area in the Trans Himalayan region of Nepal using MODIS data with improved cloud removal methodology[J].Remote Sensing of Environment,2011,115(5):1234-1246.
    [23]Dietz A J,Kuenzer C,Conrad C.Snow cover variability in Central Asia between 2000 and 2011 derived from improved MODISdaily snow cover products[J].International Journal of Remote Sensing,2013,34(11):3879-3902.
    [24]Dietz A J,Wohner C,Kuenzer C.European snow cover characteristics between 2000 and 2011 derived from improved MODISdaily snow cover products[J].Remote Sensing,2012,4(8):2432-2454.
    [25]López-Burgos V,Gupta H V,Clark M.Reducing cloud obscuration of MODIS snow cover area products by combining spatiotemporal techniques with a probability of snow approach[J].Hydrology and Earth System Sciences,2013,17(5):1809-1823.
    [26]Gao Yang,Xie Hongjie,Yao Tandong,et al.Toward advanced daily cloud-free snow cover and snow water equivalent products from Terra Aqua MODIS and Aqua AMSR-E measurements[J].Journal of Hydrology,2010,385(1):23-35.
    [27]Thirel G,Salamon P,Burek P,et al.Assimilation of MODISsnow cover area data in a distributed hydrological model[J].Hydrology and Earth System Sciences Discussions,2011,8(1):1329-1364.
    [28]Huang Xiaodong,Hao Xiaohua,Wang Wei,et al.Algorithms for cloud removal in MODIS daily snow products[J].Journal of Glaciology and Geocryology,2012,34(5):1118-1126.[黄晓东,郝晓华,王玮,等.MODIS逐日积雪产品去云算法研究[J].冰川冻土,2012,34(5):1118-1126.]
    [29]Liang Tiangang,Zhang Xuetong,Xie Hongjie,et al.Toward improved daily snow cover mapping with advanced combination of MODIS and AMSR-E measurements[J].Remote Sensing of Environment,2008,112(10):3750-3761.
    [30]Zhang Huan,Qiu Yubao,Zheng Zhaojun,et al.Comparative study of the feasibility of cloud removal methods based on MODISseasonal snowcover data over the Tibetan Plateau[J].Journal of Glaciology and Geocryology,2016,38(3):714-724.[张欢,邱玉宝,郑照军,等.基于MODIS的青藏高原季节性积雪去云方法可行性比较研究[J].冰川冻土,2016,38(3):714-724.]
    [31]Li Peiji.Distribution of snow cover over the High Asia[J].Journal of Glaciology and Geocryology,1995,17(4):291-298.[李培基.高亚洲积雪分布[J].冰川冻土,1995,17(4):291-298.]
    [32]Verma R K,Subramaniam K,Dugam S S.Interannual and longterm variability of the summer monsoon and its possible link with northern hemispheric surface air temperature[J].Proceedings of the Indian Academy of Sciences-Earth and Planetary Sciences,1985,94(3):187-198.
    [33]Stow D A,Hope A,McGuire D,et al.Remote sensing of vegetation and land-cover change in Arctic Tundra Ecosystems[J].Remote sensing of environment,2004,89(3):281-308.
    [34]SRTM DEM[EB/OL].(2016-01-11)[2016-10-15].http://srtm.csi.cgiar.org.
    [35]Dankers R,De Jong S M.Monitoring snow-cover dynamics in Northern Fennoscandia with SPOT VEGETATION images[J].International Journal of Remote Sensing,2004,25(15):2933-2949.
    [36]Painter T H,Brodzik M J,Racoviteanu A,et al.Automated mapping of Earth's annual minimum exposed snow and ice with MODIS[J].Geophysical Research Letters,2012,39(20):L20501.
    [37]Rittger K,Painter T H,Dozier J.Assessment of methods for mapping snow cover from MODIS[J].Advances in Water Resources,2013,51:367-380.
    [38]Qiu Yubao,Guo Huadong,Chu Duo,et al.MODIS daily cloudfree snow cover product over the Tibetan Plateau(2002-2015)[J].China Scientific Data,2016.DOI:10.11922/csdata.170.2016.0003.[邱玉宝,郭华东,除多,等.青藏高原MODIS逐日无云积雪面积数据集(2002-2015年)[J].中国科学数据,2016.DOI:10.11922/csdata.170.2016.0003.]

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700