甲烷化学气相沉积不同织构热解碳的动力学分析(英文)
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Chemical vapor infiltration of pyrocarbon from methane pyrolysis: kinetic modeling with texture formation
  • 作者:胡春霞 ; 李贺军 ; 张守阳 ; 李伟 ; 李霓
  • 英文作者:Chunxia Hu;Hejun Li;Shouyang Zhang;Wei Li;Ni Li;State Key Laboratory of Solidification Processing,C/C Composites Research Center,Northwestern Polytechnical University;Department of Mechanical Engineering,California State University;
  • 英文关键词:kinetic modeling;;pyrolytic carbon;;texture;;chemical vapor infiltration;;methane
  • 中文刊名:SCMA
  • 英文刊名:中国科学:材料科学(英文版)
  • 机构:State Key Laboratory of Solidification Processing,C/C Composites Research Center,Northwestern Polytechnical University;Department of Mechanical Engineering,California State University,Los Angeles;
  • 出版日期:2018-12-27 10:11
  • 出版单位:Science China Materials
  • 年:2019
  • 期:v.62
  • 基金:supported by the National Natural Science Foundation of China (51521061 and 51472203);; the “111” Project (B08040);; the Research Fund of State Key Laboratory of Solidification Processing (NWPU),China (142-TZ-2016)
  • 语种:英文;
  • 页:SCMA201906009
  • 页数:13
  • CN:06
  • ISSN:10-1236/TB
  • 分类号:88-100
摘要
本文建立了一种甲烷化学气相沉积不同织构热解碳的动力学模型.该模型包括甲烷气相热解的详细基元反应及热解碳沉积的集总表面反应,模拟了1323–1398 K立式热壁反应炉中热解碳沉积过程中不同气体的组分浓度及热解碳的沉积速率,且模拟结果优于已有报道的模型、与实验结果吻合良好.结果表明,热解碳的主要沉积机理为碳源气体在表面活性位的生长机理,其中C_1物质为主要碳源气体.随着温度升高,甲烷热解混合气体趋于成熟,乙炔、苯和多环芳香烃逐渐成为重要的碳源气体.基于以上碳源气体的热解碳形成机理分析指出热解混合气体的成熟有利于形成由六元环及五元环-七元环组合而成的高定向平面结构,即高织构热解碳,与实验结论吻合良好.
        A complete mechanism of methane pyrolysis is proposed for chemical vapor infiltration of pyrocarbon with different textures, which contains a detailed homogeneous mechanism for gas reactions and a lumped heterogeneous mechanism for pyrocarbon deposition. This model is easily applied to simulate gas compositions and pyrocarbon deposition in a vertical hot-wall flow reactor in the temperature range of 1,323–1,398 K without any adjusting parameters and presents better results than previous mechanisms. Results have shown that the consumption of methane and the production of hydrogen are well enhanced due to pyrocarbon deposition. Pyrocarbon deposition prevents the continuously increasing of acetylene composition and leads to the reduction in the mole fraction of benzene at long residence times in the gas phase. The carbon growth with active sites on the surface is the controlling mechanism of pyrocarbon deposition. C1 species is the precursor of pyrocarbon deposition at 1,323 K,and the primary source over the whole temperature range. As temperature increases, gas phase becomes more mature and depositions from acetylene, benzene and polyaromatic hydrocarbons become more prevalent. A general pyrocarbon formation mechanism is derived with the specific precursors and illustrates that the maturation of gas compositions is beneficial to forming planar structures with hexagonal rings or pentagon-heptagon pairs, namely, high textured pyrocarbon. The results are in well agreement with experiments.
引文
1 Wang C,Murugadoss V,Kong J,et al.Overview of carbon nanostructures and nanocomposites for electromagnetic wave shielding.Carbon,2018,140:696-733
    2 Li K,Zhang J.Recent advances in flexible supercapacitors based on carbon nanotubes and graphene.Sci China Mater,2018,61:210-232
    3 Chen Y,Shi J.Mesoporous carbon biomaterials.Sci China Mater,2015,58:241-257
    4 Chowdhury P,Sehitoglu H,Rateick R.Damage tolerance of carbon-carbon composites in aerospace application.Carbon,2018,126:382-393
    5 Mikociak D,Blazewicz S,Michalowski J.Biological and mechanical properties of nanohydroxyapatite-containing carbon/carbon composites.Int J Appl Ceram Technol,2012,9:468-478
    6 Cao S,Li H,Lu J,et al.Unique cytological behavior of MC3T3-E1osteoblasts on H2O2-modified C/C composites in vitro.Sci China Mater,2017,60:361-367
    7 Jia Y,Li K,Xue L,et al.Mechanical and electromagnetic shielding performance of carbon fiber reinforced multilayered(PyC-SiC)n matrix composites.Carbon,2017,111:299-308
    8 Liu X,Yin X,Kong L,et al.Fabrication and electromagnetic interference shielding effectiveness of carbon nanotube reinforced carbon fiber/pyrolytic carbon composites.Carbon,2014,68:501-510
    9 Reznik B,Hüttinger KJ.On the terminology for pyrolytic carbon.Carbon,2002,40:621-624
    10 Benzinger W,Hüttinger KJ.Chemistry and kinetics of chemical vapor infiltration of pyrocarbon-IV.Investigation of methane/hydrogen mixtures.Carbon,1999,37:931-940
    11 Zhang WG,Hu ZJ,Hüttinger KJ.Chemical vapor infiltration of carbon fiber felt:optimization of densification and carbon microstructure.Carbon,2002,40:2529-2545
    12 Hu ZJ,Zhang WG,Hüttinger KJ,et al.Influence of pressure,temperature and surface area/volume ratio on the texture of pyrolytic carbon deposited from methane.Carbon,2003,41:749-758
    13 Dong GL,Hüttinger KJ.Consideration of reaction mechanisms leading to pyrolytic carbon of different textures.Carbon,2002,40:2515-2528
    14 Norinaga K,Deutschmann O,Hüttinger KJ.Analysis of gas phase compounds in chemical vapor deposition of carbon from light hydrocarbons.Carbon,2006,44:1790-1800
    15 Norinaga K,Deutschmann O.Detailed kinetic modeling of gasphase reactions in the chemical vapor deposition of carbon from light hydrocarbons.Ind Eng Chem Res,2007,46:3547-3557
    16 Devin-Ziegler I,Fournet R,Marquaire PM.Pyrolysis of propane for CVI of pyrocarbon:Part I.Experimental and modeling study of the formation of toluene and aliphatic species.J Anal Appl Pyrolysis,2005,73:212-230
    17 Devin-Ziegler I,Fournet R,Marquaire PM.Pyrolysis of propane for CVI of pyrocarbon:Part II.Experimental and modeling study of polyaromatic species.J Anal Appl Pyrolysis,2005,73:231-247
    18 Devin-Ziegler I,Fournet R,Marquaire PM.Pyrolysis of propane for CVI of pyrocarbon:Part III:Experimental and modeling study of the formation of pyrocarbon.J Anal Appl Pyrolysis,2007,79:268-277
    19 Benzinger W,Hüttinger KJ.Chemical vapour infiltration of pyrocarbon:I.Some kinetic considerations.Carbon,1996,34:1465-1471
    20 Becker A,Hüttinger KJ.Chemistry and kinetics of chemical vapor deposition of pyrocarbon-IV Pyrocarbon deposition from methane in the low temperature regime.Carbon,1998,36:213-224
    21 Becker A,Hüttinger KJ.Chemistry and kinetics of chemical vapor deposition of pyrocarbon-V Influence of reactor volume/deposition surface area ratio.Carbon,1998,36:225-232
    22 Brüggert M,Hu Z,Hüttinger KJ.Chemistry and kinetics of chemical vapor deposition of pyrocarbon:VI.Influence of temperature using methane as a carbon source.Carbon,1999,37:2021-2030
    23 Becker A,Hüttinger KJ.Chemistry and kinetics of chemical vapor deposition of pyrocarbon-II Pyrocarbon deposition from ethylene,acetylene and 1,3-butadiene in the low temperature regime.Carbon,1998,36:177-199
    24 Hu C,Li H,Zhang S,et al.A molecular-level analysis of gas-phase reactions in chemical vapor deposition of carbon from methane using a detailed kinetic model.J Mater Sci,2016,51:3897-3906
    25 Becker A,Hüttinger KJ.Chemistry and kinetics of chemical vapor deposition of pyrocarbon-III Pyrocarbon deposition from propylene and benzene in the low temperature regime.Carbon,1998,36:201-211
    26 Hidaka Y,Nakamura T,Tanaka H,et al.Shock tube and modeling study of propene pyrolysis.Int J Chem Kinet,1992,24:761-780
    27 Tsang W.Chemical kinetic data base for combustion chemistry Part V.Propene.J Phys Chem Reference Data,1991,20:221-273
    28 Marinov NM,Pitz WJ,Westbrook CK,et al.Modeling of aromatic and polycyclic aromatic hydrocarbon formation in premixed methane and ethane flames.Combust Sci Tech,1996,116-117:211-287
    29 Richter H,Howard JB.Formation and consumption of single-ring aromatic hydrocarbons and their precursors in premixed acetylene,ethylene and benzene flames.Phys Chem Chem Phys,2002,4:2038-2055
    30 Norinaga K,Deutschmann O,Saegusa N,et al.Analysis of pyrolysis products from light hydrocarbons and kinetic modeling for growth of polycyclic aromatic hydrocarbons with detailed chemistry.J Anal Appl Pyrolysis,2009,86:148-160
    31 Gilbert RG,Luther K,Troe J.Theory of thermal unimolecular reactions in the fall-off range.II.Weak collision rate constants.Berichte der Bunsengesellschaft für physikalische Chem,1983,87:169-177
    32 Qu Y,Su K,Wang X,et al.Reaction pathways of propene pyrolysis.J Comput Chem,2010,34:1421-1442
    33 Hu Z,Hüttinger KJ.Chemistry and kinetics of chemical vapor deposition of pyrocarbon:VIII.Carbon deposition from methane at low pressures.Carbon,2001,39:433-441
    34 Frenklach M,Wang H.Detailed surface and gas-phase chemical kinetics of diamond deposition.Phys Rev B,1991,43:1520-1545
    35 Lacroix R,Fournet R,Ziegler-Devin I,et al.Kinetic modeling of surface reactions involved in CVI of pyrocarbon obtained by propane pyrolysis.Carbon,2010,48:132-144
    36 Tang ZP,Li AJ,Zhang ZW,et al.Chemistry and kinetics of heterogeneous reaction mechanism for chemical vapor infiltration of pyrolytic carbon from propane.Ind Eng Chem Res,2014,53:17537-17546
    37 Li S,Petzold L.Software and algorithms for sensitivity analysis of large-scale differential algebraic systems.J Comput Appl Math,2000,125:131-145
    38 Li A,Deutschmann O.Transient modeling of chemical vapor infiltration of methane using multi-step reaction and deposition models.Chem Eng Sci,2007,62:4976-4982
    39 Manion JA,Huie RE,Levin RD,et al.NIST Chemical Kinetics Database.Available from URL:http://kinetics.nist.gov/
    40 Hu ZJ,Hüttinger KJ.Mechanisms of carbon deposition-a kinetic approach.Carbon,2002,40:624-628
    41 Farbos B,Weisbecker P,Fischer HE,et al.Nanoscale structure and texture of highly anisotropic pyrocarbons revisited with transmission electron microscopy,image processing,neutron diffraction and atomistic modeling.Carbon,2014,80:472-489
    42 Leyssale JM,Da Costa JP,Germain C,et al.Structural features of pyrocarbon atomistic models constructed from transmission electron microscopy images.Carbon,2012,50:4388-4400
    43 He K,Robertson AW,Lee S,et al.Extended Klein edges in graphene.ACS Nano,2014,8:12272-12279

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700