超声速主流平板相变发汗冷却实验研究
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Experimental Investigation of Transpiration Cooling on a Porous Plate with Phase Change in Supersonic Flow Tunnel
  • 作者:廖致远 ; 祝银海 ; 黄干 ; 胥蕊娜 ; 姜培学
  • 英文作者:LIAO Zhi-yuan;ZHU Yin-hai;HUANG Gan;XU Rui-na;JIANG Pei-xue;Department of Energy and Power Engineering,Tsinghua University;
  • 关键词:发汗冷却 ; 多孔介质 ; 相变 ; 超声速
  • 英文关键词:Transpiration cooling;;Porous media;;Phase change;;Supersonic
  • 中文刊名:TJJS
  • 英文刊名:Journal of Propulsion Technology
  • 机构:清华大学能源与动力工程系;
  • 出版日期:2019-01-10 08:52
  • 出版单位:推进技术
  • 年:2019
  • 期:v.40;No.263
  • 基金:国家自然科学基金创新研究群体科学基金(51321002);; 国防基础科研项目(B1420110113)
  • 语种:中文;
  • 页:TJJS201905013
  • 页数:7
  • CN:05
  • ISSN:11-1813/V
  • 分类号:104-110
摘要
液态水具有较高的比热容和很高的相变潜热,采用水作为冷却剂的相变发汗冷却技术是解决高超声速飞行器关键部位热防护的高效主动冷却技术。利用主流马赫数2.2,总温500K的超声速风洞实验台,研究了超声速主流条件下多孔平板相变发汗冷却规律,分析了注入冷却剂时的非稳态过程。研究结果表明,在超声速主流条件下,多孔平板表面平均冷却效率随着注入率的提升而上升,且多孔平板上游冷却效率高于下游冷却效率,发现液态冷却剂优先从上游流出多孔表面并朝下游铺展。提升冷却剂的注入率可以提升多孔平板表面温度的均匀性。冷却剂的注入压力受到水蒸气影响,随着注入率的增大先增大后减小再增大。在较小冷却剂注入率时(F=0.05%),多孔平板表面的冷却效率都保持在0.6以上,说明相变发汗冷却具有低冷却剂用量和高冷却效率的特点。
        Transpiration cooling with phase change is an efficient active cooling technology for thermal protection on critical devices of hypersonic vehicles. With a high specific heat capacity and a high latent heat of phase change,water is effective for transpiration cooling. This paper investigated transpiration cooling with phase change on a porous plate in a supersonic wind tunnel with a Mach number of 2.2 and a total temperature of 500 K.The unsteady process of coolant injection was also observed. The results show that the average cooling efficiency on the porous plate surface increases with the increase of the injection rate,and the liquid coolant flows out from the upstream surface initially and spreads downstream under supersonic mainstream condition. The cooling efficiency of the upstream region on the porous plate is higher than that of the downstream region. The uniformity of the surface temperature increases with the coolant injection rate. The injection pressure of the coolant increases first then decreases and finally increases as the injection rate increases with the water vapor generation. The cooling efficiency on the porous plate surface is above 0.6 with a small coolant injection rate of F=0.05%,which shows that transpiration cooling with phase change has the advantages of low coolant dosage and high cooling efficiency.
引文
[1] Zhu Y H,Peng W,Xu R N,et al. Review on Active Thermal Protection and Its Heat Transfer for Airbreathing Hypersonic Vehicles[J]. Chinese Journal of Aeronautics,2018,31(10):1929-1953.
    [2] Langener T,Wolfersdorf J V,Steelant J. Experimental Investigations on Transpiration Cooling for Scramjet Applications Using Different Coolants[J]. AIAA Journal,2011,49(7):1409-1419.
    [3] Liu Y Q,Jiang P X,Jin S S,et al. Transpiration Cooling of a Nose Cone by Various Foreign Gases[J]. International Journal of Heat and Mass Transfer,2010,53(23-24):5364-5372.
    [4] Forrest A V,Sippel M,Gülhan A,et al. Transpiration Cooling Using Liquid Water[J]. Journal of Thermophysics and Heat Transfer,2009,23(4):693-702.
    [5] Shi J X,Wang J H. A Numerical Investigation of Transpiration Cooling with Liquid Coolant Phase Change[J].Transport in Porous Media,2011,87(3):703-716.
    [6] Reimer T,Esser B,Gülhan A. Arc Jet Testing of CMC Samples with Transpiration Cooling[R]. AIAA 2013-2904.
    [7] Zhao L J,Wang J H,Ma J,et al. An Experimental Investigation on Transpiration Cooling under Supersonic Condition Using a Nose Cone Model[J]. International Journal of Thermal Sciences,2014,84:207-213.
    [8] Rong Y,Wei Y,Zhan R. Research on Thermal Protection by Opposing Jet and Transpiration for High Speed Vehicle[J]. Aerospace Science Technology,2016,48:322-327.
    [9] Wu N,Wang J,Dong W,et al. An Experimental Investigation on Combined Sublimation and Transpiration Cooling for Sintered Porous Plates[J]. International Journal of Heat and Mass Transfer,2018,116:685-693.
    [10] Wang J H,Zhao L J,Wang X,et al. An Experimental Investigation on Transpiration Cooling of Wedge Shaped Nose Cone with Liquid Coolant[J]. International Journal of Heat and Mass Transfer,2014,75:442-449.
    [11] Ma J,Lin J,Wang J H. Experiment on Transpiration Cooling with Phase Change of Liquid Water[J]. Journal of Aerospace Power,2014,3:15-18.
    [12]丁亮.烧结多孔介质材料发汗冷却的研究[D].合肥:中国科学技术大学,2012.
    [13] Dong W,Wang J,Chen S,et al. Modelling and Investigation on Heat Transfer Deterioration During Transpiration Cooling with Liquid Coolant Phase-Change[J]. Applied Thermal Engineering,2018,128:381-392.
    [14] Huang G,Zhu Y H,Liao Z Y,et al. Experimental Investigation of Transpiration Cooling with Phase Change for Sintered Porous Plates[J]. International Journal of Heat and Mass Transfer,2017,114:1201-1213.
    [15] Anderson Jr J D. Hypersonic and High-Temperature Gas Dynamics[M]. USA:AIAA Education Series,2006.
    [16]黄拯.高温与超音速条件下发汗冷却基础问题研究[D].北京:清华大学,2015.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700