基于二硫键的聚氨酯网络:从可调多重形状记忆性能到同步修复(英文)
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Polyurethane networks based on disulfide bonds:from tunable multi-shape memory effects to simultaneous self-healing
  • 作者:邓小莹 ; 谢辉 ; 杜澜 ; 范诚杰 ; 成川颖 ; 杨科珂 ; 王玉忠
  • 英文作者:Xiao-Ying Deng;Hui Xie;Lan Du;Cheng-Jie Fan;Chuan-Ying Cheng;Ke-Ke Yang;Yu-Zhong Wang;Center for Degradable and Flame-Retardant Polymeric Materials (ERCEPM-MoE), College of Chemistry, National Engineering Laboratory of Eco-Friendly Polymeric Materials (Sichuan), State Key Laboratory of Polymer Materials Engineering, Sichuan University;
  • 英文关键词:polyurethane network;;disulfide bond;;self-healing;;shape-memory
  • 中文刊名:SCMA
  • 英文刊名:中国科学:材料科学(英文版)
  • 机构:Center for Degradable and Flame-Retardant Polymeric Materials (ERCEPM-MoE), College of Chemistry, National Engineering Laboratory of Eco-Friendly Polymeric Materials (Sichuan), State Key Laboratory of Polymer Materials Engineering, Sichuan University;
  • 出版日期:2019-03-01
  • 出版单位:Science China Materials
  • 年:2019
  • 期:v.62
  • 基金:supported financially by the National Natural Science Foundation of China (51773131 and 51721091);; the International S&T Cooperation Project of Sichuan Province (2017HH0034)
  • 语种:英文;
  • 页:SCMA201903013
  • 页数:11
  • CN:03
  • ISSN:10-1236/TB
  • 分类号:155-165
摘要
随着智能化时代的迅速发展,具有多功能或多响应的智能材料受到高度关注.但如何将多个智能单元以协同模式结合到单一系统中仍是研究者面临的巨大挑战.本文设计合成了一种新型聚氨酯动态交联网络,该材料能够以独立的方式和协同作用模式呈现形状记忆效应和自修复效应.为了实现这一目标,本文选择了聚四氢呋喃作为软链段以确保聚合物链具有良好的运动性,同时将动态共价键二硫键引入聚氨酯的主链中以实现材料在温和条件下的自修复.此外,通过有效调节二硫键含量、交联度和网络结构,获得了较宽的玻璃化转变温度(T_g),使网络具有两重、三重甚至四重形状的记忆效应.在此基础上,利用该材料的形状回复和修复的外界刺激条件的高度吻合,同时实现了材料修复和回复,拓宽了材料的应用范围.
        With the prompt development in intellectualization nowadays, the smart materials with multifunctionality or multi-responsiveness are highly expected. But it is a big challenge to integrate the different actuating units into a single system in a synergy pattern. Herein, we put forward a new strategy to develop the polyurethane networks which can present shape-memory effect and self-healing effect in independent way as well as simultaneous acting mode. To realize this goal, poly(tetremethylene ether) glycol was chosen as the soft segment to ensure the polymer chains a good mobility, and disulfide bond as the dynamic covalent bond was embedded in the backbone of polyurethane to endow it with desirable self-healing capacity under mild condition. Moreover, a rational control of the architecture of the networks by adjusting the content of disulfide bond and the degree of cross-linking, a broad glass transition temperature(T_g) was achieved, which enabled the network a versatile shape-memory effect, covering from dual-, triple-so far as to quadrupleshape memory effect. More importantly, the shape recovery and healing process can be realized simultaneously because of the highly matched actuating condition in this system.
引文
1 Lendlein A,Kelch S.Shape-memory polymers.Angew Chem Int Ed,2002,41:2034-2057
    2 Behl M,Lendlein A.Shape-memory polymers.Mater Today,2007,10:20-28
    3 Lendlein A,Langer R.Biodegradable,elastic shape-memory polymers for potential biomedical applications.Science,2002,296:1673-1676
    4 Huang WM,Song CL,Fu YQ,et al.Shaping tissue with shape memory materials.Adv Drug Deliver Rev,2013,65:515-535
    5 Pilate F,Toncheva A,Dubois P,et al.Shape-memory polymers for multiple applications in the materials world.Eur Polymer J,2016,80:268-294
    6 Sun L,Huang WM,Wang CC,et al.Polymeric shape memory materials and actuators.Liquid Crysts,2013,41:277-289
    7 Behl M,Razzaq MY,Lendlein A.Multifunctional shape-memory polymers.Adv Mater,2010,22:3388-3410
    8 Yang Y,Urban MW.Self-healing polymeric materials.Chem Soc Rev,2013,42:7446-7467
    9 Wool RP.Self-healing materials:a review.Soft Matter,2008,4:400
    10 Wu DY,Meure S,Solomon D.Self-healing polymeric materials:a review of recent developments.Prog Polymer Sci,2008,33:479-522
    11 Mauldin TC,Kessler MR.Self-healing polymers and composites.Int Mater Rev,2013,55:317-346
    12 Syrett JA,Becer CR,Haddleton DM.Self-healing and self-mendable polymers.Polym Chem,2010,1:978-987
    13 Jia R,Li L,Ai Y,et al.Self-healable wire-shaped supercapacitors with two twisted NiCo2O4coated polyvinyl alcohol hydrogel fibers.Sci China Mater,2018,61:254-262
    14 Boyer C,Hoogenboom R.Multi-responsive polymers.Eur Polymer J,2015,69:438-440
    15 Xie T.Recent advances in polymer shape memory.Polymer,2011,52:4985-5000
    16 Zhan MQ,Yang KK,Wang YZ.Shape-memory poly(p-dioxanone)-poly(-caprolactone)/sepiolite nanocomposites with enhanced recovery stress.Chin Chem Lett,2015,26:1221-1224
    17 Miaudet P,DerréA,Maugey M,et al.Shape and temperature memory of nanocomposites with broadened glass transition.Science,2007,318:1294-1296
    18 Xie T.Tunable polymer multi-shape memory effect.Nature,2010,464:267-270
    19 Luo Y,Guo Y,Gao X,et al.A general approach towards thermoplastic multishape-memory polymers via sequence structure design.Adv Mater,2013,25:743-748
    20 Wen Z,Zhang T,Hui Y,et al.Elaborate fabrication of well-defined side-chain liquid crystalline polyurethane networks with tripleshape memory capacity.J Mater Chem A,2015,3:13435-13444
    21 Cui J,del Campo A.Multivalent H-bonds for self-healing hydrogels.Chem Commun,2012,48:9302-9304
    22 Wei M,Zhan M,Yu D,et al.Novel poly(tetramethylene ether)glycol and poly(ε-caprolactone)based dynamic network via quadruple hydrogen bonding with triple-shape effect and selfhealing capacity.ACS Appl Mater Interfaces,2015,7:2585-2596
    23 Zhu D,Ye Q,Lu X,et al.Self-healing polymers with PEG oligomer side chains based on multiple H-bonding and adhesion properties.Polym Chem,2015,6:5086-5092
    24 Hui Y,Wen ZB,Pilate F,et al.A facile strategy to fabricate highlystretchable self-healing poly(vinyl alcohol)hybrid hydrogels based on metal-ligand interactions and hydrogen bonding.Polym Chem,2016,7:7269-7277
    25 Burattini S,Colquhoun HM,Fox JD,et al.A self-repairing,supramolecular polymer system:healability as a consequence of donor-acceptorπ-πstacking interactions.Chem Commun,2009,319:6717-6719
    26 Zhong HY,Chen L,Ding XM,et al.Physio-and chemo-dual crosslinking toward thermoand photo-response of azobenzene-containing liquid crystalline polyester.Sci China Mater,2018,61:1225-1236
    27 Kakuta T,Takashima Y,Nakahata M,et al.Preorganized hydrogel:self-healing properties of supramolecular hydrogels formed by polymerization of host-guest-monomers that contain cyclodextrins and hydrophobic guest groups.Adv Mater,2013,25:2849-2853
    28 Zhang M,Xu D,Yan X,et al.Self-healing supramolecular gels formed by crown ether based host-guest interactions.Angew Chem Int Ed,2012,51:7011-7015
    29 Chen X,Dam MA,Ono K,et al.A thermally re-mendable crosslinked polymeric material.Science,2002,295:1698-1702
    30 Li QT,Jiang MJ,Wu G,et al.Photothermal conversion triggered precisely targeted healing of epoxy resin based on thermoreversible Diels-Alder network and amino-functionalized carbon nanotubes.ACS Appl Mater Interfaces,2017,9:20797-20807
    31 Zhang J,Niu Y,Huang C,et al.Self-healable and recyclable tripleshape PPDO-PTMEG co-network constructed through thermoreversible Diels-Alder reaction.Polym Chem,2012,3:1390-1393
    32 Canadell J,Goossens H,Klumperman B.Self-healing materials based on disulfide links.Macromolecules,2011,44:2536-2541
    33 Lafont U,van Zeijl H,van der Zwaag S.Influence of cross-linkers on the cohesive and adhesive self-healing ability of polysulfidebased thermosets.ACS Appl Mater Interfaces,2012,4:6280-6288
    34 Yang WJ,Tao X,Zhao T,et al.Antifouling and antibacterial hydrogel coatings with self-healing properties based on a dynamic disulfide exchange reaction.Polym Chem,2015,6:7027-7035
    35 An SY,Noh SM,Nam JH,et al.Dual sulfide-disulfide cross-linked networks with rapid and room temperature self-healability.Macromol Rapid Commun,2015,36:1255-1260
    36 Xu Y,Chen D.A novel self-healing polyurethane based on disulfide bonds.Macromol Chem Phys,2016,217:1191-1196
    37 Kim SM,Jeon H,Shin SH,et al.Superior toughness and fast selfhealing at room temperature engineered by transparent elastomers.Adv Mater,2018,30:1705145-1705152
    38 Rekondo A,Martin R,Ruiz de Luzuriaga A,et al.Catalyst-free room-temperature self-healing elastomers based on aromatic disulfide metathesis.Mater Horiz,2014,1:237-240
    39 Deng G,Tang C,Li F,et al.Covalent cross-linked polymer gels with reversible sol-gel transition and self-healing properties.Macromolecules,2010,43:1191-1194
    40 Liu F,Li F,Deng G,et al.Rheological images of dynamic covalent polymer networks and mechanisms behind mechanical and selfhealing properties.Macromolecules,2012,45:1636-1645
    41 Roberts MC,Hanson MC,Massey AP,et al.Dynamically restructuring hydrogel networks formed with reversible covalent cross-links.Adv Mater,2007,19:2503-2507
    42 He L,Fullenkamp DE,Rivera JG,et al.p H responsive self-healing hydrogels formed by boronate-catechol complexation.Chem Commun,2011,47:7497-7499
    43 Zhang Y,Yang B,Zhang X,et al.A magnetic self-healing hydrogel.Chem Commun,2012,48:9305-9307
    44 Zhang Y,Tao L,Li S,et al.Synthesis of multiresponsive and dynamic chitosan-based hydrogels for controlled release of bioactive molecules.Biomacromolecules,2011,12:2894-2901
    45 Rodriguez ED,Ounaies Z,Luo XF,Mather PT.Shape memory miscible blends for thermal mending.Proc of SPIE,2009,7289:728912
    46 Luo X,Mather PT.Shape memory assisted self-healing coating.ACS Macro Lett,2013,2:152-156
    47 Rodriguez ED,Luo X,Mather PT.Linear/network poly(ε-caprolactone)blends exhibiting shape memory assisted self-healing(SMASH).ACS Appl Mater Interfaces,2011,3:152-161
    48 Du L,Xu ZY,Fan CJ,et al.A fascinating metallo-supramolecular polymer network with thermal/magnetic/light-responsive shapememory effects anchored by Fe3O4nanoparticles.Macromolecules,2018,51:705-715

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700