面向宽谱段共焦测量的消像差准直会聚方法
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Aberration-free collimation convergence method for broadband confocal measurement
  • 作者:宋苗苗 ; 王允 ; 邱丽荣 ; 赵维谦
  • 英文作者:Song Miaomiao;Wang Yun;Qiu Lirong;Zhao Weiqian;Optical Measurement Laboratory, School of Optoelectronics, Beijing Institute of Technology;
  • 关键词:宽谱段 ; 共焦测量 ; 准直会聚 ; 消像差
  • 英文关键词:broadband;;confocal measurement;;collimation and convergence;;aberration-free
  • 中文刊名:YQXB
  • 英文刊名:Chinese Journal of Scientific Instrument
  • 机构:北京理工大学光电学院光学测量实验室;
  • 出版日期:2018-10-15
  • 出版单位:仪器仪表学报
  • 年:2018
  • 期:v.39
  • 语种:中文;
  • 页:YQXB201810013
  • 页数:8
  • CN:10
  • ISSN:11-2179/TH
  • 分类号:103-110
摘要
针对宽谱段定焦系统存在色散严重、像差较大的问题,提出一种面向宽谱段共焦测量的消像差准直会聚新方法。该方法利用全反射式结构抑制不同波长定焦时造成的色散效应,利用抛物面结构和环形光束抑制像差,在可见至红外宽谱段内实现了对光束的精确准直与会聚,相对于现有准直会聚方法可以消除色散且明显抑制像差。理论分析和初步实验表明:依据该方法构建的准直会聚系统在不同波长光源情况下聚焦点完全重合,定焦曲线旁瓣得到明显抑制,且定焦分辨力达到72.4μm@1 064 nm,接近环形光束聚焦情况下的理论计算极限。
        To solve the problem of large dispersion and large aberration in the broadband focusing system, a new method of collimation and convergence for aberration-free confocal measurement is proposed. The method uses a total reflection configuration to suppress the dispersion effects caused by different wavelength focusing, and utilizes a paraboloid configuration and annular beam to suppress aberrations. In this way, the accurate collimation and convergence of beams in the visible to infrared range can be realized. The collimation convergence method can eliminate dispersion and significantly suppress aberrations. Theoretical analysis and preliminary experiments indicate that the focal points completely coincide when the different wavelength light sources pass the collimated convergence system constructed by using this proposed method. The sidelobes of the focusing curve is significantly suppressed. The focusing resolution reaches 72.4 μm@1 064 nm which is close to the limit of theoretical calculation in the case of annular beam focusing.
引文
[1] 乔杨,张宁,徐熙平,等. 基于共焦法的透镜厚度测量系统设计[J]. 仪器仪表学报, 2011, 32(7):1635-1641.QIAO Y, ZAHNG N, XU X P, et al. Laser confocal design of lens thickness measurement system based on confocal technology [J]. Chinese Journal of Scientific Instrument, 2011, 32(7): 1635-1641.
    [2] XIAO Y, QIU L, ZHAO W Q. Laser confocal cylindrical radius measurement method and its system [J]. Applied Optics, 2017, 56(23): 6596-6602.
    [3] YANG J M, QIU L R, ZHAO W Q, et al. Radius measurement by laser confocal technology [J]. Applied Optics, 2014, 53(13): 2860-2865.
    [4] 赵维谦, 沈阳, 邱丽荣, 等. 激光共焦透镜轴向间隙测量方法[J]. 激光与光电子学进展, 2015, 52(3): 171-177.ZHAO W Q,SHEN Y, QIU L R, et al. Development of laser differential confocal radius measurement system [J]. Chinese Journal of Scientific Instrument, 2015, 52(3): 171-177.
    [5] LU Y, XU X P, SHI N, et al. Research on measurement method and apparatus for lens center thickness [J]. Changchun University of Science and Technology, 2013, 36(3-4): 28-31.
    [6] WANG Y, QIU L R, YANG J M, et al. Measurement of the refractive index and thickness for lens by confocal technique [J]. Optik - International Journal for Light and Electron Optics, 2013, 124(17): 2825-2828.
    [7] XU X, YANG J H, QIAO Y, et al. Refractive index measurement based on confocal method [C]. Refractive Index Measurement Based on Confocal Method, 2017: 41.
    [8] TAN Y D, ZHU K Y, ZHANG S L. New method for lens thickness measurement by the frequency-shifted confocal feedback [J]. Optics Communications, 2016, 380: 91-94.
    [9] TAN Z J, JIN D, FANG N X. High-precision broadband measurement of refractive index by picosecond real-time interferometry [J]. Applied Optics, 2016, 55(24): 6625.
    [10] WANG Y, QIU L R, ZHAO W Q, et al. Broad wavelength range infrared lens refractive index measurement using confocal tomography [J]. Optics Express, 2017, 25(23): 28674.
    [11] 张磊, 刘智颖, 胡源, 等. 改进型卡塞格林光学系统的设计[J]. 长春理工大学学报(自然科学版), 2011, 34(4): 30-32.ZHANG L, LIU ZH Y, HU Y, et al. Improved design of cassegrain optical system [J]. Journal of Changchun University of Science and Technology (Natural Science Edition), 2011, 34(4): 30-32.
    [12] 潘君骅. 一个新的泛卡塞格林望远镜系统[J]. 光学精密工程, 2003, 11(5): 438-441.PAN J Y. New pan-Cassegrain telescope system [J]. Optics and Precision Engineering, 2003, 11(5): 438-441.
    [13] 丁福建, 李英才. 卡塞格林反射系统结构动态优化设计[J]. 光子学报, 1999, 28(8): 756-762.DING F J, LI Y C. An effective optimum design method of the structure of cassegrain reflective system [J]. Acta Photonica Sinica, 1999, 28(8): 756-762.
    [14] DENG ZH CH, WANG J, YE Q, et al. Continuous refractive index dispersion measurement based on derivative total reflection method [J]. Review of Scientific Instruments, 2015, 86(4): 774.
    [15] WANG J, DENG Z, WANG X, et al. Measurement of the refractive index of hemoglobin solutions for a continuous spectral region [J]. Biomedical Optics Express, 2015, 6(7): 2536.
    [16] RAISIN P, SCHENUER J, ROMANO V, et al. High-precision confocal reflection measurement for two dimensional refractive index mapping of optical fibers [C]. SPIE Optics + Optoelectronics, 2015,DOI:10.1117/12.2180988.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700