长岭断陷龙凤山次凹营城组重力流成因类型及沉积特征
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Genetic types and characteristic research on deep-water gravity flows of Yingcheng Formation in Longfengshan subsag,Changling Depression
  • 作者:王尉 ; 蒋有录 ; 李瑞磊 ; 朱建峰 ; 赵鸿皓
  • 英文作者:WANG Wei;JIANG Youlu;LI Ruilei;ZHU Jianfeng;ZHAO Honghao;School of Geosciences in China University of Petroleum(East China);Northeast Oil-Gas Branch Company,SINOPEC;
  • 关键词:裂陷期 ; 重力流类型 ; 沉积相 ; 营城组 ; 龙凤山次凹
  • 英文关键词:tectonic-paleogeomorphology;;gravity flow type;;sedimentary facies;;Yingcheng Formation;;Longfengshan subsag
  • 中文刊名:SYDX
  • 英文刊名:Journal of China University of Petroleum(Edition of Natural Science)
  • 机构:中国石油大学(华东)地球科学与技术学院;中国石油化工股份有限公司东北油气分公司;
  • 出版日期:2018-10-20
  • 出版单位:中国石油大学学报(自然科学版)
  • 年:2018
  • 期:v.42;No.229
  • 基金:中国石油化工股份有限公司科技部项目(P14035)
  • 语种:中文;
  • 页:SYDX201805003
  • 页数:12
  • CN:05
  • ISSN:37-1441/TE
  • 分类号:28-39
摘要
以松辽盆地长岭断陷南部龙凤山次凹下白垩统营城组重力流沉积为研究对象,运用钻井取心资料,分析沉积物结构构造特征、搬运沉降方式及搬运介质流变学特征的差异,对不同古地貌单元下重力流类型、岩相组合特征及成因机制进行研究。结果表明:龙凤山次凹下白垩统营城组沉积时期主要分为东北洼陷带、西南断槽带和东南斜坡带3类古地貌单元,坡度自西向东逐渐变陡,西南断槽带中同沉积断裂活动所形成的断槽为研究区重要的输砂通道,为重力流砂体长距离搬运提供有利条件;凤山次凹营城组主要发育泥质密度流、低密度浊流、高密度浊流、泥质碎屑流和砂质碎屑流5种重力流类型;根据其触发机制和相序特征分为洪水型重力流岩相组合和滑塌型重力流岩相组合;洪水型重力流具有洪水涨水期(低密度浊流—碎屑流)、洪峰期(碎屑流—高密度浊流)、退水期(低密度浊流—泥质密度流)的重力流演化过程;滑塌型重力流发育滑动滑塌转化为砂质碎屑流、高密度浊流、低密度浊流和泥质密度流的重力流演化过程;西南断槽带受洪水作用的影响,碎屑物质沿断槽进入湖盆,形成扇三角洲相,扇三角洲前缘坡折带处滑塌形成湖底扇相,东南斜坡带受构造活动的影响,碎屑物质滑塌进入半深湖—深湖环境,形成近岸水下扇相。
        The gravity flow in the Yingcheng Formation of the Longfengshan subsag was studied in this research. Based on the differences on the sediment composition structure,transportation-sedimentation mode and fluid rheological characteristics,we made full use of core,well logging,seismic explanation and other data,and carried out a study on the lithfacies types,lithofacies association characteristic and genetic mechanisms of gravity flow. The results are as follows. During the sedimentation of the Yingcheng Formation,the Longfengshan subsag can be divided into three tectonic-paleogeomorphology units,which are southwestern fault-slope zone,southeastern steep slope zone and northern depression belt. The paleogeomorphology steepens gradually from west to east. Faulted troughs formed by synsedimentary faulting are the main sand transporting channel. There are five gravity flow types developed in the Longfengshan subsag,including mud-only turbidite,low density turbidite,high density turbidite,glutenite debris flow and muddy debris flow. According to characteristics in triggering mechanisms and sedimentary facies sequences,the lithofacies association can be divided into two types,the gravity flow caused by slumping and the gravity flow caused by flooding. The whole flood process can be divided into three stage,including water-rising stage(low density turbidity flow-debris flow),flood peak stage(debris flow-high density turbidity flow),and water-recession stage(low density turbidity flow-muddy flow). The slumping process can be divided into four stages,including sliding,sandy debris flow,high density turbidity flow,and low density turbidity flow and muddy flow. The sedimentary characteristics of different tectonic-paleogeomorphology in gravity flow have been established. In the southwestern fault-slope zone,affected by flooding,terrigenous debris are transported along the faulted troughs into lacustrine and fan delta developed. Because of the development of slope break belt,the sublacustrine fan is developed by slumping of the fan delta front in the northern depression belt. In the southeastern steep slope zone,influenced by tectonic activities,debris slump into semi-deep lake and deep lake and form nearshore subaqueous fan.
引文
[1]赵泽辉,徐淑娟,姜晓华,等.松辽盆地深层地质结构及致密砂砾岩气勘探[J].石油勘探与开发,2016,43(1):12-23.ZHAO Zehui,XU Shujuan,JIANG Xiaohua,et al. Deep strata geologic structure and tight conglomerate gas exploration in Songliao Basin,East China[J]. Petroleum Exploration and Development,2016,43(1):12-23.
    [2] YANG Tian,CAO Yingchang,WANG Yanzhong,et al.Status and trends in research on deep-water gravity flow deposits[J]. Acta Geologica Sinica(English Edition),2015,89(2):610-631.
    [3]杨田,操应长,王艳忠,等.深水重力流类型、沉积特征及成因机制:以济阳坳陷沙河街组三段中亚段为例[J].石油学报,2015,36(9):1048-1059.YANG Tian,CAO Yingchang,WANG Yanzhong,et al.Types,sedimentary characteristics and genetic mechanisms of deep-water gravity flows:a case study of the middle submember in Member 3 of Shahejie Formation in Jiyang Depression[J]. Acta Petrolei Sinica,2015,36(9):1048-1059.
    [4] AMY L A,PEAKALL J,TALLING P J. Density and viscosity-stratified gravity currents:insight from laboratory experiments and implication for submarine flow deposits[J]. Sedimentary Geology,2015,179(1/2):5-29.
    [5]顾家裕,郭彬程,张兴阳.中国陆相盆地层序地层格架及模式[J].石油勘探与开发,2005,32(5):11-15.GU Jiayu,GUO Bincheng,ZHANG Xingyang. Sequence stratigraphic framework and model of the continental basins in China[J]. Petroleum Exploration and Development,2005,32(5):11-15.
    [6] KNELLER B,BRANNEY M J. Sustained high density turbidity currents and the deposition of thick massive sands[J]. Sedimentology,1995,42(1):29-46.
    [7] PICKERING,KEVIN T,UNDERWOOD,et al. Open-ocean to trench turbidity-current flow in the Nankai Trough. Flow collapse and reflection[J]. Geology,1992,20(12):1099-1102.
    [8]林畅松,潘元林,肖建新,等.“构造坡折带”:断陷盆地层序分析和油气预测的重要概念[J].地球科学——中国地质大学学报,2000,25(3):260-266.LIN Changsong,PAN Yuanlin, XIAO Jianxin, et al.Structural slope-break zone:Key concept for stratigraphic sequence analysis and petroleum forecasting fault subsidence basin[J]. Earth Science—Journal of China University of Geosciences,2000,25(3):260-266.
    [9]王英民,金武弟,刘书会,等.断陷湖盆多级坡折带的成因类型、展布及其勘探意义[J].石油与天然气地质,2003,24(3):199-203.WANG Yingmin,JIN Wudi,LIU Shuhui,et al. Genetic types,distribution and exploration significance of multistage slope breaks in rift lacustrine basin[J]. Oil&Gas Geology,2003,24(3):199-203.
    [10]冯有良,徐秀生.同沉积构造坡折带对岩性油气藏富集带的控制作用:以渤海湾盆地古近系为例[J].石油勘探与开发,2006,33(1):22-25.FENG Youliang,XU Xiusheng. Syndepositional structural slope-break zone controls on lithologic reservoirs:A case from Paleogene Bohai Bay Basin[J]. Petroleum Exploration and Development,2006,33(1):22-25.
    [11]鲜本忠,王永诗,周廷全,等.断陷湖盆陡坡带砂砾岩体分布规律及控制因素:以渤海湾盆地济阳坳陷车镇凹陷为例[J].石油勘探与开发,2007,34(4):429-436.XIAN Benzhong,WANG Yongshi,ZHOU Tingquan,et al. Distribution and controlling factors of glutinite bodies in the actic region of a rift basin:an example from Chezhen sag,Bohai Bay Basin[J]. Petroleum Exploration and Development,2007,34(4):429-436.
    [12]邓宏文,郭建宇,王瑞菊,等.陆相断陷盆地的构造层序地层分析[J].地学前缘,2008,15(2):1-7.DENG Hongwen,GUO Jianyu,WANG Ruiju,et al.Tectono-sequence stratigraphic analysis in continental faulted basin[J]. Earth Science Frontiers,2008,15(2):1-7.
    [13]王英,程日辉,王共生,等.松辽盆地梨树断陷十屋油田营城组层序地层及沉积体系[J].世界地质,2011,30(4):631-640.WANG Ying,CHENG Rihui,WANG Gongsheng,et al.Yingcheng Formation sequence stratigraphy and depositional system of Shiwu Oilfield in Lishu fault depression,Songliao Basin[J]. Global Geology,2011,30(4):631-640.
    [14]李树青,李和,徐伟,等.松辽盆地南部下白垩统层序构型及沉积特征[J].天然气工业,2007,27(4):36-39.LI Shuqing,LI He,XU Wei,et al. Sequence architectures and sedimentary features of Lower Cretaceous in the southern Songliao Basin[J]. Natural Gas Industry,2007,27(4):36-39.
    [15]秦都,黄桂雄,李瑞磊,等.松辽盆地南部断陷层碎屑岩天然气成藏主控因素分析:以长岭断陷龙凤山次凹为例[J].中国石油勘探,2016,21(3):52-61.QIN Du,HUANG Guixiong,LI Ruilei,et al. Main controlling factors for gas accumulation in clastic rocks in fault depression,southern Songliao Basin:a case study on Longfengshan sub-sag, Changling fault depression[J]. China Petroleum Exploration,2016,21(3):52-61.
    [16]葛荣峰,张庆龙,王良书,等.松辽盆地构造演化与中国东部构造体制转换[J].地质论评,2010,56(2):180-194.GE Rongfeng,ZHANG Qinglong,WANG Liangshu,et al. Tectonic evolution of Songliao Basin and the prominent tectonic regime transition in eastern China[J]. Geological Review,2010,56(2):180-194.
    [17] SHANMUGAM G. High-density turbidity currents:are they sandy debris flows?[J]. Journal of Sedimentary Research,1996,66(1):2-10.
    [18] BAGNOLD,RA. Auto-suspension of transported sediment; turbidity currents[J]. Proceedings Royal Society of London,Series A,1962,265(1322):315-319.
    [19] MIDDLETON G V,HAMPTON M A. Sediment gravity flows:mechanics of flow and deposition[M]//MIDDLETON G V,BOUMA A H. Turbidites and deep-water sedimentation. Los Angeles:Society for Sedimentary Geology,1973:1-38.
    [20]李存磊,任伟伟,张忠义,等.流体性质转换机制在重力流沉积体系分析中应用初探[J].地质论评,2012,58(2):285-296.LI Cunlei,REN Weiwei,ZHANG Zhongyi,et al. Preliminary study on gravity flow depositional system based on fluid properties conversion theory[J]. Geological Review,2012,58(2):285-296.
    [21] TALLING P J,ALLIN J,ARMITAGE D A,et al. Key future directions for research on turbidity currents and their deposits[J]. Journal of Sedimentary Research,2015,85(2):153-168.
    [22] DOTT R H. Dynamics of subaqueous gravity depositional processes[J]. AAPG Bulletin,1963,47(1):104-128.
    [23] GANI M R. From turbid to lucid:a straightforward approach to sediment gravity flows and their deposits[J].The Sedimentary Record,2004,2(3):4-8.
    [24] SHANMUGAM G. New perspectives on deep-water sandstones:implications[J]. Petroleum Exploration and Development Online,2013 40(3):316-324.
    [25] MULDER T,ALEXANDER J. The physical character of subaqueous sedimentary density flows and their deposits[J]. Sedimentology,2001,48(2):269-299.
    [26] TALLING P J,CHARLES K Paull,DAVID J W Piper.How are subaqueous sediment density flows triggered,what is their internal structure and how does it evolve?direct observations from monitoring of active flows[J].Earth-Science Reviews,2013,125:244-287.
    [27] TALLING P J,MASSON D G,SUMNER E J,et al.Subaqueous sediment density flows:depositional processes and deposit types[J].Sedimentology,2012,59(7):1937-2003.
    [28] SHANMUGAM G. 50 years of the turbidite paradigm(1950’s-1990’s):deep-water processes and facies model—a critical perspective[J]. Marine and Petroleum Geology,2000,17(2):285-342.
    [29]袁静,梁绘媛,梁兵,等.湖相重力流沉积特征及发育模式:以苏北盆地高邮凹陷深凹带戴南组为例[J].石油学报,2016,37(3):348-359.YUAN Jing,LIANG Huiyuan,LIANG Bing,et al. Sedimentary characteristics and development model of lacustrine gravity flow:a case study of Dainan Formation in deep sag belt of Gaoyou depression,Northern Jiangsu Basin[J]. Acta Petrolei Sinica,2016,37(3):348-359.
    [30]李相博,卫平生,刘化清,等.浅谈沉积物重力流分类与深水沉积模式[J].地质论评,2013,59(4):607-614.LI Xiangbo,WEI Pingsheng,LIU Huaqing,et al. Discussion on the classification ofediment gravity flow and the deep-water sedimentary model[J]. Geological Review,2013,59(4):607-614.
    [31] APLIN A C,FLEET A J,MACQUAKER J H S. Muds and mudstones:physical and fluidflow properties[J].Geological Society London Special Publications,1999,158,1-8.
    [32] SCHIEBER J. Reverse engineering mother nature-Shalesedimentology from anexperimental perspective[J].Sedimentology geology,2011,238,1-22.
    [33]鲜本忠,安思奇,施文华.水下碎屑流沉积:深水沉积研究热点与进展[J].地质论评,2014,60(1):39-51.XIAN Benzhong,AN Siqi,SHI Wenhua. Subaqueous debris flow:hotspots and advances of deep-water sedimention[J]. Geological Review,2014,60(1):39-51.
    [34] TALLING P J. On the triggers,resulting flow types and frequencies of subaqueous sediment density flows in different setting[J]. Marine Geology,2014,352:155-182.
    [35]张雷,李振海,张学娟,等.重力流沉积岩相划分及其发育规律[J].中国石油大学学报(自然科学版),2015,39(1):17-24.ZHANG Lei, LI Zhenhai, ZHANG Xuejuan, et al.Lithofacies classification and development rule of gravity flows deposits[J]. Journal of China University of Petroleum(Edition of Natural Science),2015,39(1):17-24.
    [36] PETTER A L,STEEL R J. Hyperpycnal flow variability and slope organization on an Eocene shelf margin,Central Basin,Spitsbergen[J]. AAPG Bulletin,2006,90(10):1451-1472.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700