塔里木盆地的热流、深部温度和热结构
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Heat flow,deep formation temperature and thermal structure of the Tarim Basin,Northwest China
  • 作者:刘绍文 ; 李香兰 ; 郝春艳 ; 李旭东
  • 英文作者:LIU Shaowen;LI Xianglan;HAO Chunyan;LI Xudong;Key Laboratory of Coast and Island Development(Ministry of Education),Nanjing University;School of Geographic and Oceanographic Sciences,Nanjing University;
  • 关键词:热流 ; 热结构 ; 地层温度 ; 液态窗 ; 塔里木盆地
  • 英文关键词:heat flow;;thermal structure;;formation temperature;;oil window;;Tarim Basin
  • 中文刊名:DXQY
  • 英文刊名:Earth Science Frontiers
  • 机构:南京大学海岸与海岛开发教育部重点实验室;南京大学地理与海洋科学学院;
  • 出版日期:2017-05-15
  • 出版单位:地学前缘
  • 年:2017
  • 期:v.24;No.125
  • 基金:国家自然科学基金项目(41272143);; 中国石油科技创新项目(2015D-5006-0105)
  • 语种:中文;
  • 页:DXQY201703005
  • 页数:15
  • CN:03
  • ISSN:11-3370/P
  • 分类号:47-61
摘要
盆地热状态研究不仅对于探讨盆地成因演化动力学具有重要约束作用,也能为盆地油气资源评价提供基础地热参数。塔里木克拉通是我国三大古老陆块之一,其上叠合发育了我国内陆最大的海相沉积盆地,油气潜力大,是当前油气勘探的主力区块。塔里木盆地热状态早期研究都基于石油钻孔的试油温度数据,由于缺乏稳态的高精度地温测量,制约了对盆地精准热状态的认识。我们近年来对塔里木盆地开展了高分辨率稳态深井温度测井,并结合大量的岩石热物性参数测试,深入分析了塔里木盆地现今热状态及深部热结构特征。塔里木盆地地温梯度在15~30℃/km,热流为26~66mW/m~2,平均热流为43mW/m~2。相比其他盆地而言,塔里木具有低温冷盆的热状态,并与世界上典型的前寒武克拉通具有相似的地热背景。塔里木盆地自二叠纪以来无大的构造-热事件扰动,因故整体热状态偏低,盆内局部热异常与局部构造、基底形态或岩性横向差异引起的热折射效应等有关。塔里木盆地深部地温的横向分布特征受到盆地基底格局控制,盆地1 000m埋深处的温度为29~41℃,平均为35℃;3 000m的温度为63~100℃,平均为82℃;5 000 m的温度为97~160℃,平均为129℃。盆地古生界海相烃源岩底界埋深处的地层温度整体仍处于液态窗之内。塔里木盆地长期的低温背景和深埋过程是盆地油气形成和保存的关键地热条件。塔里木盆地热流配分表明,地壳热流占地表热流的主导,其中,沉积盖层的放射性生热约占盆地地表热流的20%,估算的地幔热流为6~15mW/m~2,这一范围与世界上前寒武克拉通的地幔热流一致。塔里木盆地和青藏高原存在显著的地热差异,且这一继承性热差异可追溯至印度-欧亚大陆碰撞之前,地热差异引起两大构造区的深部岩石圈的流变学和强度存在强烈的非均质性,从而造就了目前观测的差异活动构造格局。
        The geothermal regime of a sedimentary basin not only provide constraints on the treatments of basin formation and evolution,but also offers basic geothermal parameters for the hydrocarbon resource assessment.As one of the three Precambrian blocks in China,the Tarim craton,the largest superimposed sedimentary basin,is also a main target in a current hydrocarbon exploration with great potential.Although considerable advancement has been made on the basin’s geothermal regime during the last few decades,nearly all the temperature data used in previous studies were formation testing temperatures from exploration boreholes.These temperature data lacked confidence to some extent,due to insufficient time allowed to reach steady-state at the time of measurements.Recently,we have conducted the steady-state temperature logging in the Tarim Basin and measured abundant data on rock thermal properties,which enabled us to re-visit the thermal regime.Our results demonstrate that the present-day geothermal gradient for the Tarim Basin varies from 15to 30℃/km,while heat flow ranges from 26to 66 mW/m2 with a mean of 43 mW/m2.These new data confirm that the Tarim Basin has a relatively low heat flow and shares similar geothermal regime with other Precambrian cratons in the world.Furthermore,spatial distribution of the estimated formation temperature at the depth of1-5km within the basin is also similar and mainly controlled by the crystalline basement pattern.In general,temperatures at the depth of 1km range between 29and 41℃with a mean of 35℃,while at 3km they vary from 63to 100℃with a mean of 82℃;at 5km below the surface,temperatures fall into a range between 90and 160℃with a mean of 129℃.In addition,the estimated formation temperatures at the bottom surfaces of the Paleozoic marine source rocks are still within the oil window.Hence we further propose that the long-term low geothermal background and large burial depth are the favorable conditions for hydrocarbon generation and preservation.As far as heat budget is concerned in the Tarim Basin,the radiogenic heat from the sedimentary cover(~9mW/m2)accounts for only 20%of the observed surface heat flow,while the mantle heat flow is estimated to be as low as 6-15mW/m2,similar to that in the Precambian cratons.This heat budget demonstrates that the dominant contribution to the surface heat flow comes from the crustal radiogenic heat.Any variations in surface heat flow for the Tarim Basin can be due only to changes in crustal heat production or crustal thickness.Thermal contrast between the Tarim Basin and Tibet Plateau,represented by a difference in surface heat flow and deep crustal temperature,is remarkable.This inherited thermal contrast can be traced back as far as before the India-Asia collision.Moreover,the lithosphere beneath the Tarim Basin is sufficiently strong to resist the gravitational potential energy difference and tectonic forces from Tibet.The observed lithospheric thermal and rheological contrast,therefore,can account for the differential Cenozoic deformation in the Tarim Basin and surrounding areas.
引文
[1]BARKER C.Thermal modeling of petroleum generation:theory and applications[M].Amsterdan:Elsevier Science B V,1996:512.
    [2]WELTE D H,HORSFIELD B,BARKER D R.Petroleum and basin evolution[M].Berlin:Springer,1997:535.
    [3]FRSTER A,MERRIAN D F.Geothermics in basin analysis[M].New York:Kluwer Academic/Plenum Publishers,1999:241.
    [4]WHITE N,THOMPSON M,BARWISE T.Understanding the thermal evolution of deep-water continental margins[J].Nature,2003,291:645-648.
    [5]王良书,施央申.油气盆地地热研究[M].南京:南京大学出版社,1989:127.
    [6]邱楠生,胡圣标,何丽娟.沉积盆地热体制研究的理论与应用[M].北京:石油工业出版社,2004:240.
    [7]汪集旸.地热学及其应用[M].北京:科学出版社,2015:548.
    [8]RENNER J L.The future of geothermal energy:impact of Enhanced Geothermal Systems(EGS)on the United States in the 21st Century[C].Boston:MIT,2006:372.
    [9]HUENGES E,PATRICK L.Geothermal energy systems:exploration,development,and utilization[M].New York:John Wiley&Sons,2011:486.
    [10]STOBER I,BUCHER K.Geothermal energy:from theoretical modeling to exploration and development[M].New York:Springer,2013:1-290.
    [11]ROURE F,CLOETINGH S,SCHECK-WENDEROTH M,et al.Achievements and challenges in sedimentary basin dynamics:a review[M]∥CLOETINGH S,NEGENDANK J.New frontiers in integrated solid earth sciences.Amsterdan:Springer,2009:145-233.
    [12]MATENCO L,NADER F H.2015-2019renewal application of the ILP task force 6on sedimentary basins.(2015-04-15)[2016-03-05].http:∥www.scl-ilp.org/science/task-forces/.
    [13]ZIEGLER P A,CLOETINGH S.Dynamic processes controlling evolution of rifted basins[J].Earth-Science Reviews,2004,64(1/2):1-50.
    [14]CLOETINGH S,ZIEGLER P A,BEEKMAN F,et al.Lithospheric memory,state of stress and rheology:neotectonic controls on Europe’s intraplate continental topography[J].Quaternary Science Reviews,2005,24(3):241-304.
    [15]李思田.沉积盆地动力学研究的进展、发展趋向与面临的挑战[J].地学前缘,2015,22(1):1-8.
    [16]WATTS A B,BUROV E B.Lithospheric strength and its relationship to the elastic and seismogenic layer thickness[J].Earth and Planetary Science Letters,2003,213(1/2):113-131.
    [17]HYNDMAN R D,CURRIE C A,MAZZOTTI S,et al.Temperature control of continental lithosphere elastic thickness,Te vs Vs[J].Earth and Planetary Science Letters,2009,277(3):539-548.
    [18]CLOETINGH S,BUROV E.Lithospheric folding and sedimentary basin evolution:a review and analysis of formation mechanisms[J].Basin Research,2011,23(3):257-290.
    [19]贾承造.中国塔里木盆地构造特征与油气[M].北京:石油工业出版社,1997:1-274.
    [20]ZHANG S C,HANSON A D,MOLDOWAN J M,et al.Paleozoic oil-source rock correlations in the Tarim basin,NW China[J].Organic Geochemistry,2000,31(4):273-286.
    [21]WANG Q M,NISHIDAI T,COWARD M P.The Tarim Basin,NW China:formation and aspects of petroleum geology[J].Journal of Petroleum Geology,1992,15(1):5-34.
    [22]QIU N S,CHANG J,LI J W,et al.New evidence on the Neogene uplift of South Tianshan:constraints from the(UTh)/He and AFT ages of borehole samples of the Tarim basin and implications for hydrocarbon generation[J].International Journal of Earth Sciences,2012,101(6):1625-1643.
    [23]魏大卫.塔里木盆地北缘大地热流测定[J].地质科学,1992,27(1):93-96.
    [24]王钧,汪缉安.塔里木盆地的大地热流[J].地球科学:中国地质大学学报,1995,20(4):399-404.
    [25]王良书,李成,施央申.塔里木盆地大地热流密度分布特征[J].地球物理学报,1995,38(6):855-856.
    [26]王良书.塔里木盆地北缘库车前陆盆地地温梯度分布特征[J].地球物理学报,2003,46(3):403-407.
    [27]王良书,李成,刘绍文,等.库车前陆盆地大地热流分布特征[J].石油勘探与开发,2005,32(4):79-83.
    [28]冯昌格,刘绍文,王良书,等.塔里木盆地现今地热特征[J].地球物理学报,2009,52(11):2752-2762.
    [29]FRSTER A.Analysis of borehole temperature data in the Northeast German Basin:continuous logs versus bottom-hole temperatures[J].Petroleum Geoscience,2001,7(3):241-254.
    [30]LUIJENDIJK E,TER VOORDE M,VAN BALEN R,et al.Thermal state of the Roer Valley Graben,part of the European Cenozoic rift system[J].Basin Research,2011,23(1):65-82.
    [31]HERMANRUD C.Determination of formation temperature from downhole measurements[R].Columbia,SC(USA):South Carolina University,1988.
    [32]FRSTER A,MERRIAM D F,DAVIS J C.Spatial analysis of temperature(BHT/DST)data and consequences for heatflow determination in sedimentary basins[J].Geologische Rundschau,1997,86(2):252-261.
    [33]LIU S,LEI X,WANG L.New heat flow determination in northern Tarim Craton,northwest China[J].Geophysical Journal International,2015,200(2):1194-1204.
    [34]POPOV Y A,PRIBNOW D F C,SASS J H,et al.Characterization of rock thermal conductivity by high-resolution op-tical scanning[J].Geothermics,1999,28(2):253-276.
    [35]POPOV Y A,PIMENOV V P,PEVZNER L A,et al.Geothermal characteristics of the Vorotilovo deep borehole drilled into the Puchezh-Katunk impact structure[J].Tectonophysics,1998,291(1):205-223.
    [36]HE L,HU S,HUANG S,et al.Heat flow study at the Chinese Continental Scientific Drilling site:borehole temperature,thermal conductivity,and radiogenic heat production[J].Journal of Geophysical Research:Solid Earth,2008,113:B02404.DOI:10.1029/2007JB004958.
    [37]LIU S,FENG C,WANG L,et al.Measurement and analysis of thermal conductivity of rocks in the Tarim Basin,Northwest China[J].Acta Geologica Sinica(English Edition),2011,85(3):598-609.
    [38]YUAN Y,ZHU W,MI L,et al.“Uniform geothermal gradient”and heat flow in the Qiongdongnan and Pearl River Mouth Basins of the South China Sea[J].Marine and Petroleum Geology,2009,26(7):1152-1162.
    [39]LIU S,LEI X,FENG C,et al.Estimation of subsurface formation temperature in the Tarim Basin,northwest China:implications for hydrocarbon generation and preservation[J].International Journal of Earth Sciences,2016,105(5):1329-1351.
    [40]DEMETRESCU C,WILHELM H,ENE M,et al.On the geothermal regime of the foreland of the Eastern Carpathians bend[J].Journal of Geodynamics,2005,39(1):29-59.
    [41]贾承造.塔里木盆地构造演化与区域构造地质[M].北京:石油工业出版社,1995.
    [42]JAUPART C,MARESCHAL J C.Heat flow and thermal structure of the lithosphere[M]∥SCHUBERT G.Treatise on geophysics.New York:Elsevier,2007,6:217-252.
    [43]GUO Z J,YIN A,ROBINSON A,et al.Geochronology and geochemistry of deep-drill-core samples from the basement of the central Tarim basin[J].Journal of Asian Earth Sciences,2005,25(1):45-56.
    [44]赵俊猛,程宏岗,裴顺平,等.塔里木盆地北缘的深部结构[J].科学通报,2008,53(8):946-955.
    [45]MARESCHAL J C,JAUPART C.Radiogenic heat production,thermal regime and evolution of continental crust[J].Tectonophysics,2013,609:524-534.
    [46]邱楠生.中国西北部盆地岩石热导率和生热率特征[J].地质科学,2002,37(2):196-206.
    [47]HASTEROK D,CHAPMAN D S.Heat production and geotherms for the continental lithosphere[J].Earth and Planetary Science Letters,2011,307(1):59-70.
    [48]刘绍文,王良书,李成,等.塔里木北缘岩石圈热-流变结构及其地球动力学意义[J].中国科学:D辑,2003,33(9):852-863.
    [49]刘绍文,王良书,李成,等.塔里木盆地岩石圈热-流变学结构和新生代热体制[J].地质学报,2006,80(3):344-350.
    [50]刘绍文,王良书,贾承造,等.中国中西部盆地区岩石圈热-流变学结构及其对前陆盆地成因演化的意义[J].地学前缘,2008,15(3):113-122.
    [51]王社教,胡圣标,汪集旸.准噶尔盆地热流及地温场特征[J].地球物理学报,2000,43(6):771-779.
    [52]JAUPART C,MARESCHAL J C,GUILLOU-FROTTIER L,et al.Heat flow and thickness of the lithosphere in the Canadian Shield[J].Journal of Geophysical Research:Solid Earth,1998,103(B7):15269-15286.
    [53]ROY S,RAO R U M.Heat flow in the Indian shield[J].Journal of Geophysical Research:Solid Earth,2000,105(B11):25587-25604.
    [54]HU S,HE L,WANG J.Heat flow in the continental area of China:a new data set[J].Earth and Planetary Science Letters,2000,179(2):407-419.
    [55]HE L,WANG K,XIONG L,et al.Heat flow and thermal history of the South China Sea[J].Physics of the Earth and Planetary Interiors,2001,126(3):211-220.
    [56]吴乾蕃.松辽盆地地热场[J].地震研究,1991,40(1):31-40.
    [57]王良书,李成,施央申,等.下扬子区地温场和大地热流密度分布[J].地球物理学报,1995,38(4):469-476.
    [58]QIU N S,XU W,ZUO Y H,et al.Meso-Cenozoic thermal regime in the Bohai Bay Basin,eastern North China Craton[J].International Geology Review,2015,57(3):271-289.
    [59]ALLEN P A,ALLEN J R.Basin analysis:principles and application to petroleum play assessment[M].New York:John Wiley&Sons,2013.
    [60]WANG C Y,CHEN W P,WANG L P.Temperature beneath Tibet[J].Earth and Planetary Science Letters,2013,375:326-337.
    [61]MECHIE J,SOBOLEV S V,RATSCHBACHER L,et al.Precise temperature estimation in the Tibetan crust from seismic detection of theα-βquartz transition[J].Geology,2004,32(7):601-604.
    [62]SUN Y,DONG S,ZHANG H,et al.3Dthermal structure of the continental lithosphere beneath China and adjacent regions[J].Journal of Asian Earth Sciences,2013,62:697-704.
    [63]许志琴,杨经绥,李海兵,等.青藏高原与大陆动力学:地体拼合、碰撞造山及高原隆升的深部驱动力[J].中国地质,2006,33(2):221-238.
    [64]ROYDEN L H,BURCHFIEL B C,VAN DER HILST R D.The geological evolution of the Tibetan Plateau[J].Science,2008,321:1054-1058.
    [65]MOLNAR P,LYON-CAEN H.Some simple physical aspects of the support,structure,and evolution of mountain belts[J].Geological Society of America Special Papers,1988,218:179-208.
    [66]MOLNAR P,Tapponnier P.Cenozoic tectonics of Asia:effects of a continental collision[J].Science,1975,189:419-426.
    [67]YIN A,HARRISON T M.Geologic evolution of the Himalayan-Tibetan orogen[J].Annual Review of Earth and Planetary Sciences,2000,28(1):211-280.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700