短时间高盐处理对脆江蓠光合生理生化指标的影响
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Effects of a short period of high-salinity stress on photosynthetic characteristics of Gracilaria chouae
  • 作者:徐涵 ; 李加琦 ; 薛素燕 ; 陈琼琳 ; 李阳 ; 蒋增杰 ; 毛玉泽 ; 方建光
  • 英文作者:XU Han;LI Jiaqi;XUE Suyan;CHEN Qionglin;LI Yang;JIANG Zengjie;MAO Yuze;FANG Jianguang;College of Fishers and Life Sciences, Shanghai Ocean University;Key Laboratory of Sustainable Development of Marine Fisheries, Ministry of Agriculture and Rural Affairs;Shandong Provincial Key Laboratory of Fishery Resources and Eco-environment;Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences;Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology;
  • 关键词:脆江蓠 ; 高盐胁迫 ; 光合特性 ; 叶绿素荧光参数 ; 藻类夹苗
  • 英文关键词:Gracilaria chouae;;high-salinity stress;;photosynthetic characteristics;;chlorophyll fluorescence parameters;;seedling
  • 中文刊名:ZSCK
  • 英文刊名:Journal of Fishery Sciences of China
  • 机构:上海海洋大学水产与生命学院;农业农村部海洋渔业可持续发展重点实验室山东省渔业资源与生态环境重点实验室中国水产科学研究院黄海水产研究所;青岛海洋科学与技术国家实验室海洋生态与环境科学功能实验室;
  • 出版日期:2019-07-15
  • 出版单位:中国水产科学
  • 年:2019
  • 期:v.26
  • 基金:国家自然科学基金委员会-山东省联合基金项目(U1606404);; 青岛海洋科学与技术国家实验室海洋生态与环境科学功能实验室创新团队项目(LMEES-CTSP-2018-4);; 中国水产科学研究院基本科研业务费项目(2017HY-ZD0608);中国水产科学研究院黄海水产研究所基本科研业务费项目(20603022017002,20603022017010)
  • 语种:中文;
  • 页:ZSCK201904011
  • 页数:7
  • CN:04
  • ISSN:11-3446/S
  • 分类号:105-111
摘要
脆江蓠(Gracilaria chouae)藻体脆性大,短时间高盐海水浸泡可使其软化,有利于规模夹苗生产。采用实验生态学方法研究短期高盐胁迫对脆江蓠光合生理及生化组成的影响,以探讨高盐对其光合系统的损伤及其恢复效果。实验设置5个盐度梯度(40、45、50、55、60),自然海水作为对照(盐度33),分析盐度处理1h内脆江蓠的失水率及藻体软化程度;同时研究了高盐处理0.5 h及不同恢复时间(12 h、24 h)对脆江蓠pH补偿点、光合作用荧光特性、光合作用产氧量(RO)和光合色素组成等光合生理生化指标的影响。结果表明,脆江蓠在盐度50~55的海水中浸泡0.5h效果较好,此时藻体软化,并且经过24h恢复后,藻体光合作用参数可恢复到对照组水平,该处理条件可以用于脆江蓠生产。高盐(盐度40~60)处理脆江蓠0.5h,随盐度增加,脆江蓠RO值呈波动下降(P<0.01)、pH补偿点和光合效率Y(Ⅱ)值逐渐降低(P<0.05)。PE含量随盐度增加而增加(P<0.01);恢复24 h后最大光合效率F_v/F_m和Y(Ⅱ)值基本恢复正常水平(P>0.05), Chl a、Car、PE和PC含量均恢复到与对照组无显著性差异水平(P>0.05)。本研究旨在为提高脆江蓠规模化养殖夹苗效率提供理论依据。
        To verify the feasibility of the high-salinity seawater pretreatment method and to ascertain the optimum conditions for production, the effect of high-salinity stress on the photosynthesis of Gracilaria chouae was studied using methods from experimental ecology. In this study, branches of G. chouae were incubated at five high salinity levels(40, 45, 50, 55, and 60 psu) for 30 min, with natural seawater(33 psu) as a control. Afterwards, these incubated branches of algae were transferred to natural seawater to recover for 12 h and 24 h, respectively. pH compensation point, chlorophyll fluorescence parameters, oxygenic photosynthesis, and the contents of photosynthetic pigments were measured at different salinity levels and recovery times. After algae were incubated at 40 psu for 30 min, the pH compensation point increased slightly, while RO and F_v/F_m decreased significantly. When salinity was higher than 40 psu, the pH compensation point and Y(Ⅱ) decreased, while RO decreased with increasing salinity level above 40 psu. The Chl a/Car value was significantly different among the different salinity treatment levels(P<0.01), while no significant difference was found between different incubation times within the same level of salinity. Significant changes in PE content(P<0.01) were observed, especially at 45 and 55 psu. After 12 h recovery, the overall F_v/F_m value of stressed algae was still significantly lower than of control algae(P<0.05), however,the value of Y(Ⅱ) began to increase. After 24 h recovery, the photosynthetic indices of stressed algae including F_v/F_m, Y(Ⅱ), Chl a, Car, PE, PC, and Chl a/Car were close to fully recovered. This study indicated that the algae can adjust its photosynthetic characteristics under high-salinity stress, and as a result its photosynthetic parameters are able to return to a normal level after 24 h recovery. In conclusion, the pretreatment method is feasible, and exposure to salinity of 50-55 psu for 30 minutes is a suitable treatment condition.
引文
[1]Li H,Li M Z,Xu Z G,et al.Effect of nutrient supply on nitrogen and phosphorus uptake and growth in three species of macroalgae[J].Journal of Fishery Sciences of China,2012,19(3):462-470.[李恒,李美真,徐智广,等.不同营养盐浓度对3种大型红藻氮、磷吸收及其生长的影响[J].中国水产科学,2012,19(3):462-470.]
    [2]Xu Y,Dong S L,Jin Q.Study on inhibitory effects of nine macroalgae on the growth of Heterosigma akashiwo[J].Periodical of Ocean University of China,2005,35(3):475-477.[许妍,董双林,金秋.几种大型海藻对赤潮异弯藻生长抑制效应的初步研究[J].中国海洋大学学报,2005,35(3):475-477.]
    [3]Shi S Y,Zhang Y X,Liu W Q,et al.The seasonal variation in yield,physical properties and chemical composition of agar from Gracilaria verrucosa[J].Oceanologia et Limnologia Sinica,1983,14(3):272-278.[史升耀,张燕霞,刘万庆,等.江蓠琼胶产率、物理性质和化学组成的季节变化[J].海洋与湖沼,1983,14(3):272-278.]
    [4]Ju Y Y,Ye T W,Xie F,et al.Antitumor activity in vivo and mechanism of action of Gracilaria chouae polysaccharides[J].Journal of Food Science,2016,37(5):208-213.[鞠瑶瑶,叶天文,谢飞,等.脆江蓠多糖体内抗肿瘤活性及其作用机制[J].食品科学,2016,37(5):208-213.]
    [5]Graham L E,Wilcox L W.Algae[M].New York:Prentice Hall,2000.
    [6]Wu H Y.Study on the responses of the growth and photosynthetic functions of marine macroalgae to diverse light environments[D].Guangzhou:South China University of Technology,2016.[武焕阳.大型海藻生长和光合功能对不同光环境条件的响应研究[D].广州:华南理工大学,2016.]
    [7]Guy R D,Reid D M,Krouse H R.Factors affecting 13C/12Cratios of inland halophytes.I.Controlled studies on growth and isotopic composition of Puccinellia nuttalliana[J].Canadian Journal of Botany,1986,64(11):2693-2699.
    [8]Zhu J K.Regulation of ion homeostasis under salt stress[J].Current Opinion in Plant Biology,2003,6(5):441-445.
    [9]Kumar M,Kumari P,Gupta V,et al.Biochemical responses of red alga Gracilaria corticata(Gracilariales,Rhodophyta)to salinity induced oxidative stress[J].Journal of Experimental Marine Biology and Ecology,2010,391(1):27-34.
    [10]Zhao X Q.Advances in studies on the molecular mechanism of plant’s salt tolerance[J].Journal of Anhui Agricultural Sciences,2009,37(17):7844-7849.[赵祥强.植物耐盐性分子机理研究进展[J].安徽农业科学,2009,37(17):7844-7849.]
    [11]Sui H D.Studies on the impact of carbon dioxide and other environmental factors on photosynthetic characteristics and growth of Gracilaria chouae[D].Shanghai:Shanghai Ocean University,2015.[隋海东.CO2和其他环境因子对脆江蓠光合固碳和生长影响的初步研究[D].上海:上海海洋大学,2015.]
    [12]Genty B,Briantais J M,Baker N R.The relationship between the quantum yield of photosynthetic electron transport and quenching of chlorophyll fluorescence[J].Biochimica et Biophysica Acta(BBA)-General Subjects,1989,990(1):87-92.
    [13]Kitajima M,Butler W L.Quenching of chlorophyll fluorescence and primary photochemistry in chloroplasts by dibromothymoquinone[J].Biochimica et Biophysica Acta(BBA)-Bioenergetics,1975,376(1):105-115.
    [14]Wellburn A R.The spectral determination of chlorophylls a and b,as well as total carotenoids,using various solvents with spectrophotometers of different resolution[J].Journal of Plant Physiology,1994,144(3):307-313.
    [15]Beer S,Eshel A.Determining phycoerythrin and phycocyanin concentrations in aqueous crude extracts of red algae[J].Australian Journal of Marine and Freshwater Research,1985,36(6):785-792.
    [16]Munns R.Comparative physiology of salt and water stress[J].Plant,Cell&Environment,2002,25(2):239-250.
    [17]Liu G H.Research progress in mechanism of plant resistance to salt stress[J].Journal of Anhui Agricultural Sciences,2006,34(23):6111-6112.[刘国花.植物抗盐机理研究进展[J].安徽农业科学,2006,34(23):6111-6112.]
    [18]Huang J.Inorganic carbon utilization and environmental regulation of carbonic anhydrase in Nitzschia closterium minutissima[D].Shantou:Shantou University,2008.[黄瑾.小新月菱形藻的无机碳利用机制及其碳酸酐酶的环境调控[D].汕头:汕头大学,2008.]
    [19]Ma J H,Zheng H L,Zhao Z Q,et al.Progress in mechanisms of plant resistance to salt stress[J].Life Science Research,2001,5(s1):175-179,226.[马建华,郑海雷,赵中秋,等.植物抗盐机理研究进展[J].生命科学研究,2001,5(s1):175-179,226.]
    [20]Kolber Z,Zehr J,Falkowski P.Effects of growth irradiance and nitrogen limitation on photosynthetic energy conversion in photosystem II[J].Plant Physiology,1988,88(3):923-929.
    [21]Xu D Q,Zhang Y Z,Zhang R X.Photoinhibition of photosynthesis in plants[J].Plant Physiology Communications,1992,28(4):237-243.[许大全,张玉忠,张荣铣.植物光合作用的光抑制[J].植物生理学通讯,1992,28(4):237-243.]
    [22]Masojídek J,Torzillo G,KopeckyJ,et al.Changes in chlorophyll fluorescence quenching and pigment composition in the green alga Chlorococcum sp.grown under nitrogen deficiency and salinity stress[J].Journal of Applied Phycology,2000,12(3-5):417-426.
    [23]Liang Z R,Wang F J,Sun X T,et al.Effects of light intensity,temperature and salinity on newborn branches of Sargassum thunbergii evaluated with chlorophyll fluorescence assay[J].Marine Sciences,2011,35(12):21-27.[梁洲瑞,王飞久,孙修涛,等.利用叶绿素荧光技术揭示光照、温度和盐度对鼠尾藻嫩芽的影响[J].海洋科学,2011,35(12):21-27.]
    [24]Zhou Z P,Chen X L,Chen C,et al.Effect of apoprotein on antioxidant activity of phycobiliproteins[J].Marine Sciences,2003,27(5):77-81.[周站平,陈秀兰,陈超,等.藻胆蛋白脱辅基蛋白对其抗氧化活性的影响[J].海洋科学,2003,27(5):77-81.]
    [25]Zhong Z H,Huang Z J,Chen W Z.Effects of various environmental factors on growth and biochemical components of Gracilaria bailinae[J].Progress in Fishery Sciences,2014,35(3):98-104.[钟志海,黄中坚,陈伟洲.不同环境因子对异枝江蓠的生长及生化组分的影响[J].渔业科学进展,2014,35(3):98-104.]
    [26]Zhou L,Liang X Y,Li J R.Research progress on antioxidant properties of carotenoids[J].Food Research and Development,2003,24(2):21-23.[周丽,粱新乐,励建荣.类胡萝卜素抗氧化作用研究进展[J].食品研究与开发,2003,24(2):21-23.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700