基于局部插值的双三次图像放大
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Bicubic Image Magnification Based on Local Interpolation
  • 作者:纪琳琳 ; 王平 ; 张云峰
  • 英文作者:JI Lin-lin;WANG Ping;ZHANG Yun-feng;School of Computer Science, Hubei University of Technology;School of Computer Science and Technology, Shandong University of Finance and Economics;Shandong Provincial Key Laboratory of Digital Media Technology;
  • 关键词:图像放大 ; 二次多项式曲面片 ; 修正曲面 ; 细节和边缘约束
  • 英文关键词:image magnification;;quadratic polynomial surface;;corrected surface;;detail and edge constraints
  • 中文刊名:GCTX
  • 英文刊名:Journal of Graphics
  • 机构:湖北工业大学计算机学院;山东财经大学计算机科学与技术学院;山东财经大学数字媒体重点实验室;
  • 出版日期:2019-02-15
  • 出版单位:图学学报
  • 年:2019
  • 期:v.40;No.143
  • 基金:国家自然科学基金项目(61672018,61772309);; 山东省自然科学基金项目(2016GSF120013,2017GGX10109,2018GGX101013);; 山东省省属高校优秀青年人才联合基金项目(ZR2018JL022)
  • 语种:中文;
  • 页:GCTX201901021
  • 页数:7
  • CN:01
  • ISSN:10-1034/T
  • 分类号:145-151
摘要
以距离和边缘特征为约束,提出构造分片定义的双三次多项式曲面实现图像放大的新方法,分为构造拟合曲面和修正曲面。以距离和边缘为约束构造对小邻域上像素拟合的二次多项式采样曲面,所有二次多项式采样曲面加权组合生成分片定义的双三次多项式整体曲面。由放大图像计算误差图像,由误差图像构造修正曲面的技术,进而提高放大图像精度和视觉效果。为减少构造二次多项式的计算量,提出对二次多项式系数分类计算算法,能够实现对图像任意倍数的放大。实验结果表明,该方法不仅提高了放大图像的峰值信噪比(PSNR)、结构相似度(SSIM)数值精度,也提高了图像的视觉效果。
        Image details and edge features play a very important role in the visual effect of images.Therefore, a key to image zooming is to keep image details and edges. In this paper, a new method for image zooming is proposed to construct the sampling surface piecewise defined by bicubic polynomials with the constraints of distance and edge. The method consists of two steps: constructing fitting surface and modifying surface. First, in each neighborhood region where the pixel is located,the new method constructs a quadratic polynomial sampling surface fitting pixels with distance and edge constraints; the weighted combination of all the quadratic polynomial sampling surfaces produces the general surface, which is defined piecewise by the bicubic polynomials. The magnified image obtained from the general surface has higher accuracy and better visual effect. Second, a method for constructing corrected surface is presented, which can improve the quality of the enlarged image. The corrected surface is constructed by the error image that is estimated via magnified image.Moreover, in order to reduce the computational cost of the method, the new method divides the coefficients of the quadratic polynomials into three categories, and proposes an algorithm for calculating each type of coefficients. The proposed method can magnify the image at arbitrary scales.Experimental results show that the new method not only improves the peak signal to noise ratio(PSNR) and structural similarity index(SSIM), but also improves the visual effect of the image.
引文
[1]GONZALEZ R C,WOODS R E.Digital image processing[M].2nd ed.New York:Prentice Hall,2002:90.
    [2]KEYS R G.Cubic convolution interpolation for digital image processing[J].IEEE Transactions on Acoustics Speech and Signal Processing,1981,29(6):1153-1160.
    [3]PARK S K,SCHOWENGERDT R A.Image reconstruction by parametric cubic convolution[J].Computer Vision Graphics&Image Processing,1983,23(3):258-272.
    [4]ZHOU D,SHEN X,DONG W.Image zooming using directional cubic convolution interpolation[J].IETImage Processing,2012,6(6):627-634.
    [5]GIACHETTI A,ASUNI N.Real-time artifact-free image upscaling[J].IEEE Transaction on Image Processing,2011,20(10):2760-2768.
    [6]ZHANG C M,ZHANG X,LI X M,et al.Cubic surface fitting to image with edges as constraints[C]//IEEEInternational Conference on Image Processing.New York:IEEE Press,2013:1046-1050.
    [7]TANG Y,YUAN Y,YAN P K,et al.Greedy regression in sparse coding space for single-image super-resolution[J].Journal of Visual Communication and Image Representation,2013,24(2):148-159.
    [8]YANG J,WRIGHT J,HUANG T S,et al.Image super-resolution via sparse representation[J].IEEETransaction on Image Processing,2010,19(11):2861-2873.
    [9]DONG C,LOY C C,HE K M,et al.Learning a deep convolutional network for image super-resolution[C]//European Conference on Computer Vision.Cham:Springer International Publishing,2014:184-199.
    [10]HUANG J B,SINGH A,AHUJA N.Single image super-resolution from transformed self-exemplars[C]//IEEE Conference on Computer Vision Pattern Recognition.New York:IEEE Press,2015:5197-5206.
    [11]DONG W H,ZHANG L,LUKAC R,et al.Sparse representation based image interpolation with nonlocal autoregressive modeling[J].IEEE Transaction on Image Processing,2013,22(4):1382-1394.
    [12]XU H T,ZHAI G T,YANG X K.Single image super-resolution with detail enhancement based on local fractal analysis of gradient[J].IEEE Transaction on Circuits System Video Technology,2013,23(10):1740-1754.
    [13]ZHANG Y F,FAN Q L,BAO F X,et al.Single-image super-resolution based on rational fractal interpolation[J].IEEE Transaction on Image Processing,2018,22(8):3782-3797.
    [14]XU Y,QUAN Y H,LING H,et al.Dynamic texture classification using dynamic fractal analysis[C]//IEEEInternational Conference on Computer Vision.New York:IEEE Press,2011:1219-1226.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700