革兰氏阴性菌TonB-ExbB-ExbD复合物的功能、作用机制、分布及进化
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Functions,Mechanisms,Distributions and Evolution of the TonB-ExbB-ExbD Complex of Gram-negative Bacteria
  • 作者:岳慧 ; 程安春 ; 刘马峰
  • 英文作者:YUE Hui-Xian;CHENG An-Chun;LIU Ma-Feng;Research Centre of Avian Disease,College of Veterinary Medicine of Sichuan Agricultural University;Institute of Preventive Veterinary Medicine,College of Veterinary Medicine of Sichuan Agricultural University;Key Laboratory of Animal Disease and Human Health of Sichuan Province;
  • 关键词:革兰氏阴性菌 ; TonB复合物 ; 进化
  • 英文关键词:Gram-negative bacteria;;TonB complex;;evolutionary
  • 中文刊名:SWHZ
  • 英文刊名:Chinese Journal of Biochemistry and Molecular Biology
  • 机构:四川农业大学动物医学院禽病防治研究中心;四川农业大学动物医学院预防兽医研究所;四川省动物疫病与人类健康四川省重点实验室;
  • 出版日期:2019-02-20
  • 出版单位:中国生物化学与分子生物学报
  • 年:2019
  • 期:v.35
  • 基金:国家自然科学基金项目(No.31772772)资助~~
  • 语种:中文;
  • 页:SWHZ201902005
  • 页数:10
  • CN:02
  • ISSN:11-3870/Q
  • 分类号:39-48
摘要
革兰氏阴性菌在生长繁殖过程中需要从外界摄取营养物质。一些小分子营养物质可以自由地通过革兰氏阴性菌的细胞膜,而一些大分子营养物质的转运需要特异性的TonB复合物依赖性的外膜受体进行转运。TonB复合物由TonB、ExbB、ExbD构成,是革兰氏阴性菌对外界营养物质主动转运过程的能量提供单位,在革兰氏阴性菌分布广泛。近年来,对TonB-ExbB-ExbD复合物的功能、结构及作用机制取得了重大研究进展,然而此复合物在不同的细菌也存在功能及作用机制上的差异。基于此背景,本文综述了TonB复合物的功能和结构研究进展,并分析了TonB复合物在革兰氏阴性菌中的分布、进化,比较了不同革兰氏阴性菌此复合物的差异,有助于进一步发现和揭示TonB复合物的新功能与作用机制。
        Gram-negative bacteria need to take nutrients from outside during growth and proliferation.Some small molecule nutrients can pass freely through the cell membrane of Gram-negative bacteria,while the transport of some macromolecular nutrients require specific TonB complex-dependent outer membrane receptors. The TonB complex are widely distributed in Gram-negative bacteria,which are composed of TonB,ExbB,and ExbD and acts as the energy supplying unit for the active transport of external macromolecular nutrients. In recent years,significant advances have been made in the study of the functions,structures,and mechanisms of the TonB-ExbB-ExbD complex. However,there are some differences in the functions and mechanisms of the TonB-ExbB-ExbD complex in different bacteria. In this paper,we review the function and structure of the TonB complex,and analyze the distribution and evolution of the TonB complex in Gram-negative bacteria,and compare the differences among the complexes of different Gram-negative bacteria. It is helpful to further discover and reveal the newfunctions and mechanisms of the TonB complex.
引文
[1] Andrews S,Norton I,Salunkhe AS,et al. Control of iron metabolism in bacteria[J]. Met Ions Life Sci, 2013, 12:203-239
    [2] Ge R, Sun X. Iron acquisition and regulation systems in Streptococcus species[J]. Metallomics,2014,6(5):996-1003
    [3] Nikaido H. Molecular basis of bacterial outer membrane permeability revisited[J]. Microbiol Mol Biol Rev,2003,67(4):593-656
    [4] Ollis AA,Postle K. ExbD mutants define initial stages in TonB energization[J]. J Mol Biol,2012,415(2):237-247
    [5] Schauer K,Rodionov DA,de Reuse H. New substrates for TonB-dependent transport:do we only see the‘tip of the iceberg’?[J]. Trends Biochem Sci,2008,33(7):330-338
    [6] Braun V. Energy-coupled transport and signal transduction through the gram-negative outer membrane via TonB-ExbB-ExbDdependent receptor proteins[J]. FEMS Microbiol Rev,1995,16(4):295-307
    [7] Cascales E,Lloubès R,Sturgis JN. The Tol Q-TolR proteins energize Tol A and share homologies with the flagellar motor proteins Mot A-MotB[J]. Mol Microbiol,2001,42(3):795-807
    [8] Celia H,Noinaj N,Zakharov SD,et al. Structural insight into the role of the Ton complex in energy transduction[J]. Nature,2016,538(7623):60-65
    [9] Noinaj N, Guillier M, Barnard TJ, et al. TonB-dependent transporters:regulation,structure,and function[J]. Annu Rev Microbiol,2010,64:43-60
    [10] Gresock MG, Kastead KA, Postle K. From homodimer to heterodimer and back:elucidating the TonB energy transduction cycle[J]. J Bacteriol,2015,197(21):3433-3445
    [11] Lohmiller S, Hantke K, Patzer SI, et al. TonB-dependent maltose transport by Caulobacter crescentus[J]. Microbiology,2008,154(Pt 6):1748-1754
    [12] Wayne R,Neilands JB. Evidence for common binding sites for ferrichrome compounds and bacteriophage phi 80 in the cell envelope of Escherichia coli[J]. J Bacteriol,1975,121(2):497-503
    [13] Hantke K. Identification of an iron uptake system specific for coprogen and rhodotorulic acid in Escherichia coli K12[J]. Mol Gen Genet,1983,191(2):301-306
    [14] Hollifield WC Jr,Fiss EH,Neilands JB. Modification of a ferric enterobactin receptor protein from the outer membrane of Escherichia coli[J]. Biochem Biophys Res Commun,1978,83(2):739-746
    [15] Wookey P, Rosenberg H. Involvement of inner and outer membrane components in the transport of iron and in colicin B action in Escherichia coli[J]. J Bacteriol,1978,133(2):661-666
    [16] Nikaido H,Rosenberg EY. Cir and Fiu proteins in the outer membrane of Escherichia coli catalyze transport of monomeric catechols:study with beta-lactam antibiotics containing catechol and analogous groups[J]. J Bacteriol, 1990, 172(3):1361-1367
    [17] de Lorenzo V, Bindereif A, Paw BH, et al. Aerobactin biosynthesis and transport genes of plasmid ColV-K30 in Escherichia coli K-12[J]. J Bacteriol,1986,165(2):570-578
    [18] Wagegg W,Braun V. Ferric citate transport in Escherichia coli requires outer membrane receptor protein fec A[J]. J Bacteriol,1981,145(1):156-163
    [19] Porcheron G,Garénaux A,Proulx J,et al. Iron,copper,zinc,and manganese transport and regulation in pathogenic Enterobacteria:correlations between strains,site of infection and the relative importance of the different metal transport systems for virulence[J]. Front Cell Infect Microbiol,2013,3:90
    [20] Balhesteros H,Shipelskiy Y,Long NJ,et al. TonB-Dependent Heme/Hemoglobin Utilization by Caulobacter crescentus HutA[J]. J Bacteriol,2017,199(6).pii:e00723-16
    [21] Bassford PJ Jr,Kadner RJ. Genetic analysis of components involved in vitamin B12 uptake in Escherichia coli[J]. J Bacteriol,1977,132(3):796-805
    [22] Schwiesow L,Mettert E,Wei Y,et al. Control of hmu Heme Uptake Genes in Yersinia pseudotuberculosis in Response to Iron Sources[J]. Front Cell Infect Microbiol,2018,8:47
    [23] Schauer K,Gouget B,Carriere M,et al. Novel nickel transport mechanism across the bacterial outer membrane energized by the TonB/ExbB/ExbD machinery[J]. Mol Microbiol, 2007, 63(4):1054-1068
    [24] Si M,Zhao C,Burkinshaw B,et al. Manganese scavenging and oxidative stress response mediated by type VI secretion system in Burkholderia thailandensis[J]. Proc Natl Acad Sci U S A,2017,114(11):E2233-E2242
    [25] Si M,Wang Y,Zhang B,et al. The Type VI Secretion System Engages a Redox-Regulated Dual-Functional Heme Transporter for Zinc Acquisition[J]. Cell Rep,2017,20(4):949-959
    [26] Abdollahi S, Rasooli I, Mousavi Gargari SL. An in silico structural and physicochemical characterization of TonBdependent copper receptor in A. baumannii[J]. Microb Pathog,2018,118:18-31
    [27] Abdollahi S,Rasooli I,Mousavi Gargari SL. The role of TonBdependent copper receptor in virulence of Acinetobacter baumannii[J]. Infect Genet Evol,2018,60:181-190
    [28] Burrows LL. A new route for polar navigation[J]. Mol Microbiol,2013,90(5):919-922
    [29] Alice AF,Naka H,Crosa JH. Global gene expression as a function of the iron status of the bacterial cell:influence of differentially expressed genes in the virulence of the human pathogen Vibrio vulnificus[J]. Infect Immun,2008,76(9):4019-4037
    [30] Duong-Nu TM,Jeong K,Hong SH,et al. All Three Ton B Systems Are Required for Vibrio vulnificus CMCP6 Tissue Invasiveness by Controlling Flagellum Expression[J]. Infect Immun,2015,84(1):254-265
    [31] Huang B,Ru K,Yuan Z,et al. tonB3 is required for normal twitching motility and extracellular assembly of type IV pili[J]. J Bacteriol,2004,186(13):4387-4389
    [32] Rosenberg T,Salam BB,Burdman S. Association between loss of type IV pilus synthesis ability and phenotypic variation in the cucurbit pathogenic bacterium Acidovorax citrulli[J]. Mol Plant Microbe Interact,2018. 31(5):548-559
    [33] Koebnik R. TonB-dependent trans-envelope signalling:the exception or the rule?[J]. Trends Microbiol,2005,13(8):343-347
    [34] Wang Q,Liu Q,Cao X,et al. Characterization of two TonB systems in marine fish pathogen Vibrio alginolyticus:their roles in iron utilization and virulence[J]. Arch Microbiol,2008,190(5):595-603
    [35] Ferguson AD, Amezcua CA, Halabi NM, et al. Signal transduction pathway of TonB-dependent transporters[J]. Proc Natl Acad Sci U S A,2007,104(2):513-518
    [36] Braun V,Braun M. Iron transport and signaling in Escherichia coli[J]. FEBS Lett,2002,529(1):78-85
    [37] Llamas MA,Imperi F,Visca P,et al. Cell-surface signaling in Pseudomonas:stress responses,iron transport,and pathogenicity[J]. FEMS Microbiol Rev,2014,38(4):569-597
    [38] Brickman TJ,Vanderpool CK,Armstrong SK. Heme transport contributes to in vivo fitness of Bordetella pertussis during primary infection in mice[J]. Infect Immun,2006,74(3):1741-1744
    [39] Liao H,Cheng X,Zhu D,et al. TonB Energy Transduction Systems of Riemerella anatipestifer Are Required for Iron and Hemin Utilization[J]. PLoS One,2015,10(5):e0127506
    [40] Miao S,Xing L,Qi J,et al. Roles of the TonB1 and TonB2proteins in haemin iron acquisition and virulence in Riemerella anatipestifer[J]. Microbiology,2015,161(8):1592-1599
    [41] Zimbler DL,Arivett BA,Beckett AC,et al. Functional Features of Ton B Energy Transduction Systems of Acinetobacter baumannii[J]. Infect Immun,2013,81(9):3382-3394
    [42] Minandri F,Imperi F,Frangipani E,et al. Role of Iron Uptake Systems in Pseudomonas aeruginosa Virulence and Airway Infection[J]. Infect Immun,2016,84(8):2324-2335
    [43] Bosak J,Laiblova P,Smarda J,et al. Novel colicin Fy of Yersinia frederiksenii inhibits pathogenic Yersinia strains via YiuR-mediated reception,TonB import,and cell membrane pore formation[J]. J Bacteriol,2012,194(8):1950-1959
    [44] Sverzhinsky A,Chung JW,Deme JC,et al. Membrane Protein Complex ExbB4-ExbD1-TonB1from Escherichia coli Demonstrates Conformational Plasticity[J]. J Bacteriol,2015,197(11):1873-1885
    [45] Krewulak KD,Vogel HJ. TonB or not Ton B:is that the question?[J]. Biochem Cell Biol,2011,89(2):87-97
    [46] Sean Peacock R,Weljie AM,Peter Howard S,et al. The solution structure of the C-terminal domain of TonB and interaction studies with TonB box peptides[J]. J Mol Biol,2005,345(5):1185-1197
    [47]廖何斌,刘马峰,程安春.部分革兰氏阴性菌TonB蛋白的结构特点及作用机制[J].微生物学报(Liao HB,Liu MF,Cheng AC. Structural features and functional mechanism of TonB in some Gram-negative bacteria-A review[J]. Acta Microbiol Sin),2015,55(5):529-536
    [48] Khursigara CM,De Crescenzo G,Pawelek PD,et al. Deletion of the proline-rich region of Ton B disrupts formation of a 2:1complex with FhuA,an outer membrane receptor of Escherichia coli[J]. Protein Sci,2005,14(5):1266-1273
    [49] Chu BC,Peacock RS,Vogel HJ. Bioinformatic analysis of the TonB protein family[J]. Biometals,2007,20(3-4):467-483
    [50] Ollis AA,Postle K. The same periplasmic ExbD residues mediate in vivo interactions between ExbD homodimers and ExbD-TonB heterodimers[J]. J Bacteriol,2011,193(24):6852-6863
    [51] Garcia-Herrero A,Peacock RS,Howard SP,et al. The solution structure of the periplasmic domain of the TonB system ExbD protein reveals an unexpected structural homology with siderophore-binding proteins[J]. Mol Microbiol,2007,66(4):872-889
    [52] Ollis AA,Manning M,Held KG,et al. Cytoplasmic membrane protonmotive force energizes periplasmic interactions between ExbD and TonB[J],Mol Microbiol. 2009,73(3):466-481
    [53] Baker KR, Postle K. Mutations in Escherichia coli ExbB transmembrane domains identify scaffolding and signal transduction functions and exclude participation in a proton pathway[J]. J Bacteriol,2013,195(12):2898-2911
    [54]董妍玲,潘学武.细菌内依赖TonB的外膜铁转运体的研究进展[J].生物技术通报(Dong YL,Pan XW. Progress of TonB-dependent transporters for iron on outer membrane in bacteria[J]. Biotechnol Bull),2012,1:23-29
    [55] Rutz JM,Liu J,Lyons JA,et al. Formation of a gated channel by a ligand-specific transport protein in the bacterial outer membrane[J]. Science,1992,258(5081):471-475
    [56] Bolam DN,Van den Berg B. TonB-dependent transport by the gut microbiota:novel aspects of an old problem[J]. Curr Opin Struct Biol,2018,51:35-43
    [57] Shultis DD,Purdy MD,Banchs CN,et al. Outer membrane active transport:structure of the BtuB:TonB complex[J].Science,2006,312(5778):1396-1399
    [58] Pawelek PD,Croteau N,Ng-Thow-Hing C,et al. Structure of TonB in complex with FhuA,E. coli outer membrane receptor[J]. Science,2006,312(5778):1399-1402
    [59] Cadieux N,Bradbeer C,Kadner RJ. Sequence changes in the ton box region of BtuB affect its transport activities and interaction with TonB protein[J]. J Bacteriol,2000,182(21):5954-5961
    [60] Fischer E,Günter K,Braun V. Involvement of ExbB and TonB in transport across the outer membrane of Escherichia coli:phenotypic complementation of exb mutants by overexpressed tonB and physical stabilization of TonB by ExbB[J]. J Bacteriol,1989,171(9):5127-5134
    [61] Ollis AA,Postle K. Identification of functionally important TonB-ExbD periplasmic domain interactions in vivo[J]. J Bacteriol,2012,194(12):3078-3087
    [62] Clarke TE,Tari LW,Vogel HJ. Structural biology of bacterial iron uptake systems[J]. Curr Top Med Chem,2001,1(1):7-30
    [63] Jana B, Manning M, Postle K. Mutations in the ExbB cytoplasmic carboxy terminus prevent energy-dependent interaction between the TonB and ExbD periplasmic domains[J].J Bacteriol,2011,193(20):5649-5657
    [64] Jordan LD,Zhou Y,Smallwood CR,et al. Energy-dependent motion of TonB in the Gram-negative bacterial inner membrane[J]. Proc Natl Acad Sci U S A,2013,110(28):11553-11558
    [65] Abdelhamed H,Lawrence ML,Karsi A. The Role of TonB Gene in Edwardsiella ictaluri Virulence[J]. Front Physiol,2017,8:1066
    [66] Seliger SS,Mey AR,Valle AM,et al. The two TonB systems of Vibrio cholerae:redundant and specific functions[J]. Mol Microbiol,2001,39(3):801-812
    [67] Stork M,Di Lorenzo M,Mouri1o S,et al. Two tonB Systems Function in Iron Transport in Vibrio anguillarum,but Only One Is Essential for Virulence[J]. Infect Immun,2004,72(12):7326-7329
    [68] Payne SM, Mey AR, Wyckoff EE. Vibrio Iron Transport:Evolutionary Adaptation to Life in Multiple Environments[J].Microbiol Mol Biol Rev,2015,80(1):69-90
    [69] de Amorim GC,Prochnicka-Chalufour A,Delepelaire P,et al.The Structure of Has B Reveals a New Class of TonB Protein Fold[J]. PLoS One,2013,8(3):e58964
    [70] Kuehl CJ,Crosa JH. The TonB energy transduction systems in Vibrio species[J]. Future Microbiol,2010,5(9):1403-1412
    [71] Lopez CS, Peacock RS, Crosa JH, et al. Molecular characterization of the TonB2 protein from the fish pathogen Vibrio anguillarum[J]. Biochem J,2009,418(1):49-59
    [72] Gaisser S,Braun V. The tonB gene of Serratia marcescens:sequence,activity and partial complementation of Escherichia coli tonB mutants[J]. Mol Microbiol,1991,5(11):2777-2787
    [73] Zhao Q,Poole K. Mutational Analysis of the TonB1 Energy Coupler of Pseudomonas aeruginosa[J]. J Bacteriol,2002,184(6):1503-1513
    [74] Kuehl CJ,Crosa JH. Molecular and genetic characterization of the TonB2-cluster TtpC protein in pathogenic vibrios[J]. Biometals,2009,22(1):109-115
    [75] Zhai YF,Heijne W,Saier MH Jr. Molecular modeling of the bacterial outer membrane receptor energizer, ExbBD/TonB,based on homology with the flagellar motor,Mot AB[J]. Biochim Biophys Acta,2003,1614(2):201-210
    [76] Kustusch RJ,Kuehl CJ,Crosa JH. The ttpC gene is contained in two of three TonB systems in the human pathogen Vibrio vulnificus,but only one is active in iron transport and virulence[J]. J Bacteriol,2012,194(12):3250-3259
    [77] Marmon L. Elucidating the origin of the ExbBD components of the TonB system through Bayesian inference and maximum-like lihood phylogenies[J]. Mol Phylogenet Evol,2013,69(3):674-686

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700