聚丙烯粗纤维轻骨料混凝土梁的二次峰值荷载曲线
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Secondary Peak Load Curve of Polypropylene Crude Fiber Reinforced Lightweight Aggregate Concrete Beam
  • 作者:牛建刚 ; 刘江森 ; 王佳雷
  • 英文作者:NIU Jiangang;LIU Jiangsen;WANG Jialei;School of Civil Engineering,Inner Mongolia University of Science and Technology;School of Civil Engineering,Central South University;
  • 关键词:聚丙烯纤维 ; 轻骨料混凝土梁 ; 弯曲强度 ; 二次峰值荷载模型
  • 英文关键词:polypropylene fiber;;lightweight aggregate reinforced concrete beam;;flexural strength;;secondary peak load model
  • 中文刊名:CLDB
  • 英文刊名:Materials Review
  • 机构:内蒙古科技大学土木工程学院;中南大学土木工程学院;
  • 出版日期:2018-07-25
  • 出版单位:材料导报
  • 年:2018
  • 期:v.32
  • 基金:国家自然科学基金(51368042);; 内蒙古自治区青年科技英才支持计划(NJYT-18-A06)
  • 语种:中文;
  • 页:CLDB201814016
  • 页数:6
  • CN:14
  • ISSN:50-1078/TB
  • 分类号:82-86+92
摘要
为研究聚丙烯粗纤维轻骨料混凝土梁弯曲荷载挠度曲线中的二次峰值问题以及拟合弯曲强度与纤维掺量间的定量关系,在轻骨料混凝土中掺入聚丙烯粗纤维,聚丙烯粗纤维掺量分别为0kg/m3、3kg/m3、6kg/m3和9kg/m3。采用四点弯曲试验,研究纤维掺量与轻骨料混凝土间的增强关系,同时引入二次峰值荷载模型,通过与其他文献数据对比,探讨弯曲荷载挠度曲线二次峰值现象的影响因素。结果表明,当聚丙烯粗纤维掺量为6kg/m3时,增强和增韧效果较好;弯曲强度和纤维掺量间拟合的定量关系式中ατ=3.360,与选取文献报道的ατ值相比,未出现二次峰值现象的ατ数值较小,而出现二次峰值荷载现象的ατ值均较大,较大的ατ值与弯曲荷载挠度曲线形成二次峰值荷载有关;对于聚丙烯纤维轻骨料混凝土梁弯曲荷载挠度曲线出现的二次峰值问题,二次峰值荷载模型给出了较好的解释。
        In order to study the problem of secondary peak load of polypropylene fiber reinforced concrete beams in the bending deflection curve and the quantitative relationship between fitting flexural strength and fiber content,the lightweight aggregate concrete was mixed with polypropylene fiber,the polypropylene fiber content was 0 kg/m3,3 kg/m3,6 kg/m3 and 9 kg/m3,respectively.Four-point bending beam test was adopted to study the relationship between the fiber content and the lightweight aggregate concrete.By introducing secondary peak load model and by comparing with other literature data,the influential factors of the secondary peak load of the bending load deflection curve were discussed.The results show that when polypropylene fiber content is 6 kg/m3,bending toughness and flexural strength are better.In the fitting quantitative relationship between flexural strength and the fiber contentατ=3.360,compared with theατvalue in the selected literature,the value ofατwhich the secondary peak does not appear is smaller,while the value ofατwhich the secondary peak load appears is larger.The largerατvalue is related to the secondary peak load of the bending load deflection curve formation.The problem of secondary peak of polypropylene fiber lightweight aggregate reinforced concrete beam in the bending deflection curve can be better explained by secondary peak load model.
引文
1 Zhao S,Li C,Zhao M,et al.Experimental study on autogenous and drying shrinkage of steel fiber reinforced lightweight-aggregate concrete[J].Advances in Materials Science and Engineering,2016,2016(6):1.
    2 Sun H,Lieping Y E,Ding J,et al.Shrinkage and creep of highstrength lightweight aggregate concrete[J].Journal of Tsinghua University,2007,47(6):765.
    3 Libre N A,Shekarchi M,Mahoutian M,et al.Mechanical properties of hybrid fiber reinforced lightweight aggregate concrete made with natural pumice[J].Construction and Building Materials,2011,25(5):2458.
    4 Altun F,Aktas B.Investigation of reinforced concrete beams behavior of steel fiber added lightweight concrete[J].Construction and Building Materials,2013,38(38):575.
    5 Balendran R V,Zhou F P,Nadeem A,et al.Influence of steel fibres on strength and ductility of normal and lightweight high strength concrete[J].Building and Environment,2002,37(12):1361.
    6 Domagala L.Modification of properties of structural lightweight concrete with steel fibres[J].Journal of Civil Engineering and Management,2011;17(1):36.
    7 Soylev T A,Ozturan T.Durability,physical and mechanical properties of fiber reinforced concretes at low-volume fraction[J].Construction and Building Materials,2014,73:67.
    8 Cengiz O,Turanli L.Comparative evaluation of steel mesh,steel fibre and high-performance polypropylene fibre reinforced shotcrete in panel test[J].Cement and Concrete Research,2004,34(8):1357.
    9 Alani A M,Beckett D.Mechanical properties of a large scale synthetic fibre reinforced concrete ground slab[J].Construction and Building Materials,2013,41(2):335.
    10 Peyvandi A,Soroushian P,Jahangirnejad S.Enhancement of the structural efficiency and performance of concrete pipes through fiber reinforcement[J].Construction and Building Materials,2013,45(45):36.
    11 Kaufmann J,Frech K,Schuetz P,et al.Rebound and orientation of fibers in wet sprayed concrete applications[J].Construction and Building Materials,2013,49(6):15.
    12 Shi Y,Tuladhar R,Feng S,et al.Use of macroplastic fibres in concrete:A review[J].Construction&Building Materials,2015,93:180.
    13 Tanyildizi H.Statistical analysis for mechanical properties of polypropylene fiber reinforced lightweight concrete containing silica fume exposed to high temperature[J].Materials&Design,2009,30(8):3252.
    14 Banthia N,Gupta R.Influence of polypropylene fiber geometry on plastic shrinkage cracking in concrete[J].Cement and Concrete Research,2006,36(7):1263.
    15 Liu X,Ye G,Schutter G D,et al.On the mechanism of polypropylene fibres in preventing fire spalling in self-compacting and high performance cement paste[J].Cement and Concrete Research,2008,38(4):487.
    16 Behfarnia K,Behravan A.Application of high performance polypropylene fibers in concrete lining of water tunnels[J].Materials&Design,2014,55(6):274.
    17 Alberti M G,Enfedaque A,Gálvez J C,et al.Polyolefin fiber-reinforced concrete enhanced with steel-hooked fibers in low proportions[J].Materials&Design,2014,60(8):57.
    18 Fraternali F,Ciancia V,Chechile R,et al.Experimental study of the thermo-mechanical properties of recycled PET fiber-reinforced concrete[J].Composite Structures,2011,93(9):2368.
    19 Yoo D Y,Yoon Y S,Banthia N.Flexural response of steel-fiber-reinforced concrete beams:Effects of strength,fiber content,and strain-rate[J].Cement&Concrete Composites,2015,64(2):84.
    20 Alberti M G,Enfedaque A,Gálvez J C.On the mechanical properties and fracture behavior of polyolefin fiber-reinforced self-compacting concrete[J].Construction and Building Materials,2014,55(4):274.
    21 Holschemacher K,Mueller T,Ribakov Y.Effect of steel fibres on mechanical properties of high-strength concrete[J].Materials&Design,2010,31(5):2604.
    22 Fan Shuhua,Qin shuang,Ding Yining.Steel fiber distribution and its effect on the toughness of steel fiber concrete beams[J].Industrial Construction,2013,43(2):104(in Chinese).范树华,覃霜,丁一宁.钢纤维在梁截面的分布及其对混凝土梁弯曲韧性的影响[J].工业建筑,2013,43(2):104.
    23 Deng Zongcai,Liu Gouping,Du Chaochao,et al.Flexural toughness of a new kind of macro-polyolefin fiber reinforced high performance concrete[J].Journal of Building Materials,2014,17(2):228(in Chinese).邓宗才,刘国平,杜超超,等.新型粗聚烯烃纤维高性能混凝土弯曲韧性[J].建筑材料学报,2014,17(2):228.
    24 Ding Yining,Cao Jifeng.Experimental study of behaviour of modified macropolypropylene fiber reinforced high performance concrete[J].Journal of Dalian University of Technology,2007,47(5):707(in Chinese).丁一宁,曹继锋.聚丙烯长纤维高性能混凝土性能研究[J].大连理工大学学报,2007,47(5):707.
    25 Song Heyue.Assessment of steel fiber distribution in concrete matrix and its effect on toughness[D].Dalian:Dalian University of Techno-logy,2016(in Chinese).宋贺月.钢纤维在混凝土基体中的分布规律及与韧性的关系[D].大连:大连理工大学,2016.
    26 Naaman A E,Reinhardt H W.Proposed classification of HPFRC composites based on their tensile response[J].Materials and Structures,2006,39(5):547.
    27 Oh B H,Ji C K,Choi Y C.Fracture behavior of concrete members reinforced with structural synthetic fibers[J].Engineering Fracture Mechanics,2007,74(1):243.
    28 Costa H M D,Ramos V D,Oliveira M G D.Degradation of polypropylene(PP)during multiple extrusions:Thermal analysis,mechanical properties and analysis of variance[J].Polymer Testing,2007,26(5):676.
    29 Swamy R N,Al-Ta’An S A.Deformation and ultimate strength in flexure of reinforced concrete beams made with steel fiber concrete[J].ACI Structural Journal,1981,78(5):395.
    30 Pajak M,Ponikiewski T.Flexural behavior of self-compacting concrete reinforced with different types of steel fibers[J].Construction and Building Materials,2013,47(10):397.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700