陶粒压裂支撑剂研究进展
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Research Progress on Ceramic Fracturing Proppants
  • 作者:崔冰峡 ; 刘军 ; 陈耀斌 ; 高峰
  • 英文作者:CUI Bing-xia;LIU Jun;CHEN Yao-bin;GAO Feng;College of Materials Science and Engineering,Taiyuan University of Technology;Shanxi Building Material Industrial Design & Research Institute;
  • 关键词:水力压裂 ; 支撑剂 ; 低密度
  • 英文关键词:hydraulic fracturing;;proppant;;low-weight
  • 中文刊名:GSYT
  • 英文刊名:Bulletin of the Chinese Ceramic Society
  • 机构:太原理工大学材料科学与工程学院;山西省建筑材料设计研究院;
  • 出版日期:2016-02-15
  • 出版单位:硅酸盐通报
  • 年:2016
  • 期:v.35;No.233
  • 基金:山西省国际合作项目(2015081047)
  • 语种:中文;
  • 页:GSYT201602025
  • 页数:6
  • CN:02
  • ISSN:11-5440/TQ
  • 分类号:124-129
摘要
水力压裂是应用于石油天然气行业中的一种有效增产措施。随着非常规油气藏的发展,其已成为我国亟待攻克的技术难点之一。而压裂支撑剂是水力压裂过程中的关键材料,即用于支撑裂缝从而提高油气藏渗透率的球形颗粒。文章综述了国内外陶粒支撑剂的研究现状及发展趋势,重点介绍了铝矾土基和高岭土基压裂支撑剂的研究进展以及压裂支撑剂的制备工艺。
        Hydraulic fracturing is an effective technique applied to the petroleum and gas industry. With the development of untraditional reservoir, hydraulic fracturing has become one of the technical difficulties for our country to overcome urgently. Fracturing proppants are small spherical particles used to improve the reservoir permeability,which prop fractures and then improve the oil and gas fracture permeability. This paper reviews the current situation and prospect of ceramic proppants with an emphasis on the research progress of bauxite-based and kaolinite-based fracturing proppants and the preparation processes of fracturing proppants.
引文
[1]姜福杰,庞雄奇,欧阳学成,等.世界页岩气研究概况及中国页岩气资源潜力分析[J].地学前缘,2012,19(2):198-211.
    [2]徐合献,马颖洁.非常规油气藏在未来油气行业中日益增强的作用[J].国外油田工程,2004,20(3):32-35.
    [3]邹才能,杨智,朱如,等.中国非常规油气勘探开发与理论技术进展[J].地质学报,2015,89(6):979-1007.
    [4]管清友,李君臣.美国页岩气革命与全球政治经济格局[J].国际经济评论,2013,2:21-34.
    [5]王南,裴玲,雷丹凤,等.中国非常规天然气资源分布及开发现状[J].油气地质及采收率,2015,22(1):26-31.
    [6]邹才能,陶士振,白斌,等.论非常规油气与常规油气的区别和联系[J].中国石油勘探,2015,20(1):1-16.
    [7]Barati R,Liang J T.A review of fracturing fluid systems used for hydraulic fracturing of oil and gas wells[J].Journal of Applied Polymer,2014,131(16):1-11.
    [8]杨秀夫,刘希圣,陈勉,等.国内外水力压裂技术现状及发展趋势[J].钻采工艺,1998,21(4):21-26.
    [9]周少鹏,田玉明,陈战考,等.陶粒压裂支撑剂研究现状及新进展[J].硅酸盐通报,2013,32(6):1097-1102.
    [10]刘爱平,田玉明,赵鹏飞,等.陶粒压裂支撑剂发展现状及未来展望[J].中国陶瓷,2015,51(6):1-5.
    [11]Lee D S,Elsworth D,Yasuhara H,et al.Experiment and modeling to evaluate the effects of proppant-pack diagenesis on fracture treatments[J].Journal of Petroleum Science and Engineering,2010,74:67-76.
    [12]孟召平,刘翠丽,纪懿明.煤层气/页岩气开发地质条件及其对比分析[J].煤炭学报,2013,38(5):728-736.
    [13]Mansoor Z,Abdoullatif G.Application of polymers for coating of proppant in hydraulic fracturing of subterraneous formations:A comprehensive review[J].Journal of Natural Gas Science and Engineering,2015,24:197-09.
    [14]高峰,吴尧鹏,刘军,等.铬铁矿掺杂对压裂支撑剂结构与性能的影响[J].无机材料学报,2013,28(9):1019-1024.
    [15]刘军,高峰,吴尧鹏,等.白云石掺杂制备高强度压裂支撑剂及其机理探讨[J].功能材料,2013,增刊I,44:138-148.
    [16]田玉明,刘爱平,赵鹏飞,等.烧结温度对低密度陶粒支撑剂组织和性能的影响[J].陶瓷学报,2014,35(5):483-486.
    [17]刘爱平,田玉明,赵鹏飞,等.一种低密度陶粒压裂支撑剂的制备及性能研究[J].硅酸盐通报,2014,33(11):2843-2847.
    [18]田玉明,周少鹏,陈战考.镁渣对刚玉-莫来石复相陶瓷显微结构及性能的影响[J].中国陶瓷,2014,50(1):18-25.
    [19]Kong X C,Tian Y M,Chai Y S,et al.Effects of pyrolusite additive on the microstructure and mechanical strength of corundum-mullite ceramics[J].Ceramics International,2015,41:4294-4300.
    [20]李福洲,张琴琴.轻烧铝矾土对陶粒支撑剂烧结机理的影响[J].武汉理工大学学报,2013,35(7):32-36.
    [21]刘云.高强度陶粒支撑剂的研制[J].陶瓷,2004,5:24-26.
    [22]张希君,刘腾,孟晓钢.一种利用鹅卵石为主要添加剂的超低密度陶粒支撑剂及其制备方法[P].CN:102676151,2012-09-19.
    [23]Zhao J Z,Liu Z L,Li Y M.Preparation and characterization of low-density mullite-based ceramic proppant by a dynamic sintering method[J].Materials Letters,2015,152:72-75.
    [24]Li Y,Huang Z J,Lin S M,et al.Composition and method for producing an ultra-lightweight cermic proppant[P].US:8727003B2,2014-03-20.
    [25]Cannan C D,Palamara T C.Low density proppant[P].US:7036591B2,2006-03-02.
    [26]Walter G L,John R H,Barry E S.Strength enhancement of aluminosilicate aggregate through modified thermal treatment[J].International Journal of Applied Ceramic Technology,2006,3(2):157-165.
    [27]吴振东,叶建东.添加剂对氧化铝陶瓷的烧结和显微结构的影响[J].兵器材料科学与工程,2002,25(1):68-72.
    [28]Cao J J,Dong X F,Li L L,et al.Recycling of waste fly ash for production of porous mullite ceramicmembrane supports with increased porosity[J].Journal of the European Ceramic Society,2014,34:3181-3194.
    [29]Kong L B,Huang H,Zhang T S.Growth of mullite whiskers in mechanochemically activated oxides doped with WO3[J].Journal of the European Ceramic Society,2003,23:2257-2264.
    [30]Mitra N K,Maitra S,Gnanabharathi D,et al.Effect of Cr2O3on the sintering of aluminosilicate precursor leading to mullite formation[J].Ceramics International,2001,27:277-282.
    [31]Ilic S,Zec S,Miljkovic M,et al.Sol-gel synthesis and characterization of iron doped mullite[J].Journal of Alloys and Compounds,2014,612:259-264.
    [32]高如琴,吴洁琰,王紫括,等.粉煤灰基煤层压裂支撑剂的研究[J].硅酸盐通报,2014,33(6):1319-1322.
    [33]陈平,刘凯,刘毅,等.低密高强压裂支撑剂的研究[J].陕西科技大学学报,2014,32(1):63-67.
    [34]邓浩,公衍生,罗文君,等.低密度高强度覆膜陶粒支撑剂的制备与性能研究[J].硅酸盐通报,2015,34(5):1193-1198.
    [35]张伟民,李宗田,李庆,等.高强度低密度树脂覆膜陶粒研究[J].油田化学,2013,30(2):189-220.
    [36]高峰,刘军,吴尧鹏,等.原料粒度及升温速率对支撑剂性能的影响[J].太原理工大学学报,2013,44(2):199-202.
    [37]田玉明,周少鹏,柴跃生,等.一种利用镁渣制备陶粒支撑剂的工艺及陶粒支撑剂[P].CN:104560006,2015-04-29.
    [38]侯赵平,张长江,张树志,等.一种多孔莫来石微球的制备方法[P].CN:104628410,2015-05-20.
    [39]本杰明·T·伊尔德,布莱特·A·威尔逊,克莱顿·F·盖迪尼尔,等.由浆滴形成的支撑剂颗粒及其使用方法[P].CN:103547545,2014-01-29.
    [40]Urbanek,Thomas W.Lightweight proppant and method of making same[P].US:2006/0016598,2006-01-26.
    [41]白频波,李占刚,马晓娟,等.经济型陶粒油气压裂支撑剂及其制备方法[P].CN:104194768,2014-12-10.
    [42]中华人民共和国石油天然气行业标准SY/T5108-1997.压裂支撑剂性能测试推荐方法[S].
    [43]中华人民共和国石油天然气行业标准SY/T5108-2006.压裂支撑剂性能指标及测试推荐方法[S]..
    [44]中华人民共和国石油天然气行业标准SY/T5108-2014.水力压裂和砾石充填作业用支撑剂性能测试方法[S]..

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700