青藏高寒地区真实环境冻融作用的量化与统计
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Quantification and statistics of site freeze-thaw cycles in Qinghai-Tibet plateau cold region
  • 作者:司伟 ; 马骉 ; 仁乾龙珠 ; 格桑泽仁 ; 李宁
  • 英文作者:SI Wei;MA Biao;RENQIAN Longzhu;GESANG Zeren;LI Ning;Key Laboratory for Special Area Highway Engineering of Ministry of Education, Chang′an University;Postdoctoral Research Station, Tibet Tianlu Co., Ltd.;Traffic Science Institute of Tibet;
  • 关键词:青藏高寒地区 ; 冻融循环 ; 气象参数 ; 量化分析 ; 统计分析
  • 英文关键词:Qinghai-Tibet plateau cold region;;freeze-thaw cycle;;meteorological parameter;;quantification analysis;;statistical analysis
  • 中文刊名:JSLG
  • 英文刊名:Journal of Jiangsu University(Natural Science Edition)
  • 机构:长安大学特殊地区公路工程教育部重点实验室;西藏天路股份有限公司博士后科研工作站;西藏自治区交通科学研究所;
  • 出版日期:2019-03-10
  • 出版单位:江苏大学学报(自然科学版)
  • 年:2019
  • 期:v.40;No.205
  • 基金:国家自然科学基金资助项目(51708044);; 西藏自治区自然科学基金资助项目(XZ2017ZRG-117);; 陕西省自然科学基金资助项目(2017JQ5080);; 中国博士后科学基金资助项目(2017M613036)
  • 语种:中文;
  • 页:JSLG201902019
  • 页数:7
  • CN:02
  • ISSN:32-1668/N
  • 分类号:118-124
摘要
通过对青藏公路沿线6个典型区域近60 a气温与降水进行统计分析,提出通过划分4个温度区间来反映外界环境对路面性能的影响;基于温度对沥青路面结构深度方向的作用,同时考虑冻结温度与融化温度的冻融作用,提出了冻融强度划分准则,将其划分为弱冻融和强冻融;量化分析了6个典型区域真实环境的冻融作用次数,得到了青藏公路沿线真实环境冻融作用次数的统计特征,6个区域年均真实环境冻融作用次数基本达到150次以上.研究表明:青藏公路沿线各典型区域冻融作用变化差异较大,具有时间集中的特点,主要发生在快速降温、快速升温及持续低温阶段;冻融作用是青藏高寒地区影响公路工程质量的主要外界因素.
        The temperature and precipitation meteorological data for near 60 years in six regions along the Qinghai-Tibet highway were statistically analyzed, and four temperature ranges were proposed to show the environment impacts on pavement performance. The freeze-thaw intensity classification criterion was proposed based on the temperature influence on asphalt pavement structure, and freeze temperature and thaw temperature were simultaneously considered in the freeze-thaw intensity classification criterion. The freeze-thaw intensity was classified as weak freeze-thaw and strong freeze-thaw. The site freeze-thaw cycles in six regions were analyzed, and the statistical characteristics were obtained. The annual field freeze-thaw cycles in six regions were almost more than 150 times. The results show that the freeze-thaw cycles in six regions are different, and the freeze-thaw cycles present seasonal concentration trends. The freeze-thaw mainly happens in rapid cooling temperature range, fast warming temperature range and continual low temperature range. The influence of freeze-thaw cycles is the critical environment factor on highway engineering.
引文
[ 1 ] HUANG Y H. Pavement Analysis and Design[M]. 2nd ed. New Jersey: Prentice-Hall, 2004.
    [ 2 ] 马骉, 王秉纲.冻土地区路面基层结构与材料[M].北京: 人民交通出版社, 2007.
    [ 3 ] 杨吾扬.中国陆路交通自然条件评价和区划概要[J].地理学报, 1964, 30(4):301-319.YANG W Y. Nature condition assessment and regiona-lization of land transportation in China[J]. Acta Geographica Sinica, 1964, 30(4):301-319.(in Chinese)
    [ 4 ] 耿大定, 陈传康, 杨吾扬, 等.论中国公路自然区划[J].地理学报, 1978, 33(1):49-62.GENG D D, CHEN C K, YANG W Y, et al. On the highway natural regionalization of China[J]. Acta Geographica Sinica, 1978, 33(1):49-62.(in Chinese)
    [ 5 ] 沈金安.道路沥青及沥青混合料的气候分区及关键性技术指标[J].中国公路学报, 1997, 10(1):1-9.SHEN J A. Climate zoning for road asphalt and asphalt mixture and the key technical index[J]. China Journal of Highway and Transport, 1997, 10(1):1-9.(in Chinese)
    [ 6 ] 苗英豪.气候对公路的影响及公路气候区划方案研究[D].西安:长安大学, 2006.
    [ 7 ] 司伟, 马骉, 汪海年, 等.沥青混合料在冻融循环作用下的弯拉特性[J].吉林大学学报(工学版), 2013, 43(4): 885-890.SI W, MA B, WANG H N, et al. Flexural tensile cha-racteristics of asphalt mixture under freeze-thaw cycles[J]. Journal of Jilin University (Engineering and Technology Edition), 2013, 43(4): 885-890.(in Chinese)
    [ 8 ] 马骉, 周雪艳, 司伟, 等. 青藏高寒地区沥青混合料的水稳定性与高温性能研究[J]. 冰川冻土, 2015, 37(1):175-182.MA B, ZHOU X Y, SI W, et al. Study of the water stability and high temperature performance of asphalt mixtures in Qinghai-Tibet cold regions[J]. Journal of Gla-ciology and Geocryology, 2015, 37(1): 175-182.(in Chinese)
    [ 9 ] 吴金荣, 马芹永, 王文娟. 温度与侵蚀对沥青混凝土冻融疲劳寿命的影响[J]. 冰川冻土, 2015, 37(2):422-427.WU J R, MA Q Y, WANG W J. Influence of temperature and corrosion on freezing-thawing fatigue life of asphalt concrete[J]. Journal of Glaciology and Geocryology, 2015, 37(2): 422-427.(in Chinese)
    [10] 杨瑞华, 许志鸿, 李宇峙.沥青混合料水稳定性评价方法研究[J].同济大学学报(自然科学版), 2007,35(11):1486-1491.YANG R H, XU Z H, LI Y Z. Research on evaluation method for moisture susceptibility of asphalt mixture[J]. Journal of Tongji University (Natural Science), 2007, 35(11):1486-1491.(in Chinese)
    [11] SI W, MA B, WANG H N, et al. Analysis of compressive characteristics of asphalt mixture under freeze-thaw cycles in cold plateau regions[J]. Journal of Highway and Transportation Research and Development (English Edition), 2013, 7(4):17-22.
    [12] 郑健龙,张洪刚,钱国平,等. 水温冻融循环条件下沥青混合料性能衰变的规律[J]. 长沙理工大学学报(自然科学版), 2010, 7(1): 7-11.ZHENG J L, ZHANG H G, QIAN G P, et al. Attenuated performance of asphalt mixture under freeze-thaw cycle with water and temperature[J]. Journal of Changsha University of Science and Technology (Natural Science), 2010, 7(1): 7-11.(in Chinese)
    [13] 林迟, 欧进萍. 基于结构全寿命设计需求的冻融作用谱模型与参数[J]. 自然灾害学报, 2013, 22(4): 1-10.LIN C, OU J P. Model and parameters of freeze-thaw action spectrum for the needs of structural life-cycle design[J]. Journal of Natural Disasters, 2013, 22(4): 1-10.(in Chinese)
    [14] 司伟, 马骉, 汪海年, 等.基于路基顶面温度的多年冻土区沥青路面结构[J].长安大学学报(自然科学版), 2012, 32(6):16-22.SI W, MA B, WANG H N, et al. Subgrade top tempe-rature of asphalt pavement structure in permafrost areas[J]. Journal of Chang′an University (Natural Science Edition), 2012, 32(6):16-22.(in Chinese)
    [15] 李金玉, 彭小平, 邓正刚, 等.混凝土抗冻性的定量化设计[J]. 混凝土, 2000(9):61-65.LI J Y, PENG X P, DENG Z G, et al. Quantitative design on the frost-resistance of concrete[J]. Concrete, 2000(9):61-65. (in Chinese)
    [16] 秦健, 孙立军. 国外沥青路面温度预估方法综述[J].中外公路, 2005, 25(6):19-23.QIN J, SUN L J. Review of foreign asphalt pavement temperature forecast method[J]. Journal of China & Foreign Highway, 2005, 25(6):19-23.(in Chinese)

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700