新型IEM-UF耦合短程硝化反硝化系统脱氮特性
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Study onthe nitrogen removal performance ofnew IEM-UF with shortcut nitrification denitrification system
  • 作者:张岩 ; 马翔山 ; 郭威 ; 邢金良 ; 张博康 ; 刘子奇 ; 陈昌明
  • 英文作者:ZHANG Yan;MA Xiang-shan;GUO Wei;XING Jin-liang;ZHANG Bo-kang;LIUZi-qi;CHEN Chang-ming;Key Laboratory of Water Quality Science and Water Environment Recovery Engineering ,Beijing University of Technology;Beijing Fengtai District Health Inspection;
  • 关键词:离子交换膜 ; UF ; 短程硝化 ; 16S ; rDNA ; 低C/N废水
  • 英文关键词:ion exchange membrane;;ultrafiltration membrane;;shortcut nitrification;;16S rDNA;;low C/N ratio wastewater
  • 中文刊名:ZGHJ
  • 英文刊名:China Environmental Science
  • 机构:北京工业大学北京市水质科学与水环境恢复工程重点实验室;北京市丰台区卫生和计划生育监督所;
  • 出版日期:2018-02-20
  • 出版单位:中国环境科学
  • 年:2018
  • 期:v.38
  • 基金:国家自然科学基金资助项目(项目编号:51478015)
  • 语种:中文;
  • 页:ZGHJ201802018
  • 页数:9
  • CN:02
  • ISSN:11-2201/X
  • 分类号:144-152
摘要
针对低碳氮比生活污水的特点,提出新型离子交换膜-超滤组合膜(IEM-UF)氮富集短程硝化反硝化脱氮工艺.研究了新型IEM-UF亚硝化反硝化脱氮系统在三阶段运行工况下各反应器的性能及整个系统的脱氮及COD去除效果,同时应用高通量技术探究菌群结构变化对脱氮效果的影响.试验结果表明:C/N为3,亚硝化反应器中DO=0.5mg/L条件下,亚硝化反应器中NO_2~--N积累率仅用19d就达到了90%;在短程反硝化进水流量比为2:1的条件下,COD及NO_x~--N平均去除率分别达到80%和89%以上.TN去除率最高达到64.8%.高通量16S r DNA测序结果表明,三阶段菌群结构变化与系统脱氮效果的变化一致,亚硝化反应3个阶段亚硝化单胞菌Nitrosomonas所占比例分别为3.69%、5.48%和0.53%,反硝化反应3个阶段反硝化菌Dechloromonas、Thauera之和占活性污泥总菌群比例达到33.35%、25.62%、20.52%.
        Inthis research, a new system that combination of the ion exchangemembrane and ultrafiltration membrane(IEM-UF) nitrogen enrichment with shortcut nitrification and denitrification was proposed for low carbon nitrogen ratio of domestic sewage. The performance of nitrogen and COD removalin the system were studiedunder the three stage operating condition. Meanwhile, the characteristicsof the microbial community in the system were analyzed by high throughput technology, andthe effect of the flora changes on the nitrogen removal was investigated. The rate of nitrite accumulation in the shortcut nitrification reactor reached above 90%only 19 d when C/N was 3 and DO=0.5 mg/L.When the ratio of denitrifying influent was 2: 1, the average removal rates of COD and NO_x~--Nreached above 80% and 89%, respectively. The maximum removal rate of TN was above 64.8%. Besides, the change of bacterial community structure in the three stage was consistent with the change of nitrogen removal efficiency. Under the three operatingconditions, the proportion of Nitrosomonas accounted for the proportion of the genus in the shortcut nitrification reactor was about 3.69%, 5.48% and0.53% respectively. As well asthe sum of denitrifying bacteria Dechloromonas and Thauerain the denitrification reactor accounted for 33.35%, 25.62% and 20.52%, respectivelyunder the three stage.
引文
[1]Carrera J,Vicent T,Lafuente J.Effect of Influent COD/N Ratio On Biological Nitrogen Removal(BNR)From High-Strength Ammonium Industrial Wastewater[J].Process Biochemistry,2004,39(12):2035-2041.
    [2]谢文玉,李德豪,钟华文,等.一体化A/O生物膜反应器脱氮特性研究[J].环境工程学报,2011,5(3):570-574.
    [3]龚正,龙腾锐,曹艳晓,等.分点进水A/O工艺处理低碳源生活污水的脱氮性能研究[J].环境工程学报,2011,5(1):85-89.
    [4]祝贵兵,彭永臻,郭建华.短程硝化反硝化生物脱氮技术[J].哈尔滨工业大学学报,2008,40(10):1552-1557.
    [5]高春娣,王惟肖,李浩,等.SBR法交替缺氧好氧模式下短程硝化效率的优化[J].中国环境科学,2015,35(2):403-409.
    [6]孙洪伟,彭永臻,时晓宁,等.UASB-A/O工艺处理垃圾渗滤液短程生物脱氮的实现[J].中国环境科学,2009,29(10):1059-1064.
    [7]张岩,陈敬,王修平,等.新型淹没式组合膜的氨氮富集性能[J].环境工程学报,2016,10(7):3391-3395.
    [8]国家环境保护总局水和废水监测分析方法编委会.水和废水监测分析方法[M].3版.北京:中国环境科学出版社,2002:252-266.
    [9]孙洪伟,杨庆,董国日,等.游离氨抑制协同过程控制实现渗滤液短程硝化[J].中国科学:化学,2010,40(8):1156-1162.
    [10]王延臻,姜春丽,刘晨光,等.电压对电渗析回收汽油碱渣中Na OH的影响[J].石油学报(石油加工),2008,24(5):609-613.
    [11]李凌云,彭永臻,杨庆,等.SBR工艺短程硝化快速启动条件的优化[J].中国环境科学,2009,29(3):312-317.
    [12]Tokutomi T.Operation of a nitrite-type airlift reactor at low DO concentration[J].Wat.Sci.Technol.,2004,49(5/6):81-88.
    [13]Balmelle B.Study of factors controlling nitrite build-up inbiological processes of water nitrification[J].Wat.Sci.Technol.,1992,26(5/6):1017-1025.
    [14]Yoo H,Ahn K-H,Lee H-J,et al.Nitrogen removal from syntheticwastewater by simultaneous nitrification and denitrification vianitrite in an intermittently-aerated reactor[J].Wat.Res.,1999,33(1):145-154.
    [15]张黎,胡筱敏,姜彬慧,等.亚硝化SBR反应器快速启动过程的控制条件优化[J].环境工程,2014,32(10):66-70.
    [16]GB 8978-1996污水综合排放标准[S].
    [17]余兆祥,齐荣,尹艳君.A/O固定生物膜系统处理焦化废水的研究[J].中国科学,2004,34(6):509-516.
    [18]肖静,许国仁.低碳氮比污水对同步硝化反硝化脱氮的影响[J].水处理技术,2012,38(11):11-80.
    [19]曾薇,李磊,杨莹莹,等.A2O工艺处理生活污水短程硝化反硝化的研究[J].中国环境科学,2010,30(5):625-632.
    [20]陈永志,彭永臻,王建华,等.A2/O-曝气生物滤池工艺处理低C/N比生活污水脱氮除磷[J].环境科学学报,2010,30(10):1957-1963.
    [21]邓时海,李德生,卢阳阳,等.集成模块系统同步硝化反硝化处理低碳氮比污水的试验[J].中国环境科学,2014,34(9):2259-2265.
    [22]易艳红,李小江,孙红松,等.新型SBBR工艺处理低C/N值生活污水的研究[J].中国给水排水,2011,27(3):12-15.
    [23]吴昌永,彭永臻,彭轶.A2O工艺处理低C/N比生活污水的试验研究[J].化工学报,2008,59(12):3126-3131.
    [24]Utaker J B,Nes I F.A qualitative evaluation of the published oligo nucledtides specific for the 16S r RNA gene sequences of ammonia oxidizing bacteria[J].Syst Appl Microbiol,1998,21(1):72-88.
    [25]朱强,刘凯,董石语,等.连续流亚硝化中试反应器的启动及其能力提升[J/OL].环境科学,2017,(2017-06-07).http://kns.cnki.net/kcms/detail/11.1895.X.20170608.1819.082.html.
    [26]Horn M A,Ihssen J,Matthies C,et al.Dechloromonas denitrificans sp.nov.,Flavobacterium denitrificans sp.nov.,Paenibacillus anaericanus sp.nov.and Paenibacillus terrae strain MH72,N2O-producing bacteria isolated from the gut of the earthworm Aporrectodea caliginosa.[J].International journal of systematic and evolutionary microbiology,2005,55(3):1255.
    [27]Coates J D,Chakraborty R,Lack J G,et al.Anaerobic benzene oxidation coupled to nitrate reduction in pure culture by two strains of Dechloromonas[J].Nature,2011,411(6841):1039-43.
    [28]Zhou H X,Li X K,Chu Z R,et al.Effect of temperature downshifts on a bench-scale hybrid A/O system:Process performance and microbial community dynamics[J].Chemosphere,2016,153:500–507.
    [29]孟成成,郝瑞霞,王建超,等.3BER-S耦合脱氮系统运行特性研究[J].中国环境科学,2014,34(11):2817-2823.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700