面向建筑类型的钢筋混凝土构造环境排放及其材料碳足迹研究
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Research on Environmental Emission and Materials' Carbon Footprint of Reinforced Concrete Structure:Oriented Building Types
  • 作者:李慧 ; 邓权学 ; 张静晓
  • 英文作者:LI Hui;DENG Quanxue;ZHANG Jingxiao;School of Civil Engineering, Chang'an University;School of Economic and Management, Chang'an University;
  • 关键词:钢筋混凝土构造 ; 能源利用 ; 碳足迹 ; 环境排放 ; SimaPro
  • 英文关键词:reinforced concrete structure;;energy utilization;;carbon footprint;;environmental emissions;;SimaPro
  • 中文刊名:STJJ
  • 英文刊名:Ecological Economy
  • 机构:长安大学建筑工程学院;长安大学经济与管理学院;
  • 出版日期:2019-03-01
  • 出版单位:生态经济
  • 年:2019
  • 期:v.35;No.339
  • 基金:国家自然科学基金青年科学基金项目“面向价值共创的中国建筑业网络化服务能力机理分析及实证研究”(71301013);; 教育部人文社会科学规划基金项目“大型建筑业企业服务创新能力动态成长模型与驱动机制研究:商业模式与绿色生产协同视角”(17YJA790091);; 陕西省社会科学基金项目“环境规制下陕西省全面创新效率测度及其时空演变研究”(2017S004);; 陕西省社科界重大理论与现实问题研究项目“技术创新与绿色发展协同驱动陕西建筑业‘追赶超越’政策路径研究”(2017Z028);; 西安市科技计划项目“环境规制政策实施下西安城市绿色创新效率测度及提升对策”(201805070RK1SF4[6])
  • 语种:中文;
  • 页:STJJ201903034
  • 页数:7
  • CN:03
  • ISSN:53-1193/F
  • 分类号:198-204
摘要
随着中国能源形势日趋紧张,钢筋混凝土构造环境排放在节能减排中的作用愈发被重视。但是中国钢筋混凝土构造在环境排放测算模型及材料碳足迹分析方面缺乏建筑类型对比研究。该研究以住宅类与医院类建筑为例,结合多案例研究与定量研究的方法,建立钢筋混凝土构造环境排放测算模型,评价其全寿命周期的环境排放趋势,测算出两种类型钢筋混凝土构造的材料碳足迹,并根据研究分析结果提出降低碳足迹的措施。结果显示:在物化阶段,混凝土碳足迹对于全球变暖的贡献为20%~50%;建筑使用与维护阶段的碳足迹占其整个生命周期碳足迹的34%~70%;单位建筑面积的医院类建筑材料碳足迹远大于住宅类建筑,达到了3 390 kgCO2e。
        As the situation of energy becoming increasingly tense in China, the role of environmental emissions from reinforced concrete structures in energy conservation and emission reduction has become more crucial. Nevertheless, there is a lack of the comparative study on the types of buildings in environmental emission estimation models and material carbon footprint analysis in China's reinforced concrete structures. Hence, this study takes residential and hospital buildings as examples, combines multiple case studies and quantitative research methods, and establishes an environmental impact assessment model of reinforced concrete structures. According to the model, we analyzed the environmental emission trends of reinforced concrete structures in life cycle, calculated the material carbon footprint of two types of reinforced concrete structures, and proposed measures to reduce the carbon footprint based on the research results. The results show that during the materialization phase, the contribution of concrete's carbon footprint to global warming is 20% to 50%. In usage and maintenance phase, the carbon footprint of structures accounts for 34% to 70% in its life cycle. And the carbon footprint of hospital buildings is larger than that from residential buildings, reaching to 3 390 kgCO2 e in unit area.
引文
[1]王玉.工业化预制装配建筑的全生命周期碳排放研究[D].南京:东南大学,2016.
    [2]李兵.低碳建筑技术体系与碳排放测算方法研究[D].武汉:华中科技大学,2012.
    [3]方定琴.上海市建筑能源消耗的估算与分析[D].合肥:合肥工业大学,2012.
    [4]Besir A B,Cuce E.Green roofs and facades:A comprehensive review[J].Renewable&Sustainable Energy Reviews,201882(1):915-939.
    [5]Wu X Y,Peng B,Lin B R.A dynamic life cycle carbon emission assessment on green and non-green buildings in China[J].Energy&Buildings,2017,149:272-281.
    [6]Kim R,Tae S,Roh S.Development of low carbon durability design for green apartment buildings in South Korea[J].Renewable&Sustainable Energy Reviews,2017,77:263-272.
    [7]Cao K Y,Xu X P,Wu Q,et al.Optimal production and carbon emission reduction level under cap-and-trade and low carbon subsidy policies[J].Journal of Cleaner Production,2017,167:505-513.
    [8]Li X Y,Peng Y,Zhang J.A mathematical/physics carbon emission reduction strategy for building supply chain network based on carbon tax policy[J].Open Physics,2017,15(1):97-107.
    [9]Lu Y J,Peng C,Li D Z.Carbon emissions and policies in China’s building and construction industry:Evidence from 1994to 2012[J].Building&Environment,2016,95:94-103.
    [10]Choi S W,Oh B K,Park H S.Design technology based on resizing method for reduction of costs and carbon dioxide emissions of high-rise buildings[J].Energy&Buildings,2017,138:612-620.
    [11]Chau C K,Hui W K,Ng W Y,et al.Assessment of CO2 emissions reduction in high-rise concrete office buildings using different material use options[J].Resources Conservation&Recycling2012,61(4):22-34.
    [12]Zhang X C,Wang F L.Stochastic analysis of embodied emissions of building construction:A comparative case study in China[J]Energy&Buildings,2017,151:574-584.
    [13]Lee D,Lim C,Kim S.CO2 emission reduction effects of an innovative composite precast concrete structure applied to heavy loaded and long span buildings[J].Energy&Buildings,2016126:36-43.
    [14]Teh S H,Wiedmann T,Schinabeck J,et al.Replacement scenarios for construction materials based on economy-wide hybrid LCA[J]Procedia Engineering,2017,180:179-189.
    [15]Stocchero A,Seadon J K,Falshaw R,et al.Urban equilibrium for sustainable cities and the contribution of timber buildings to balance urban carbon emissions:A New Zealand case study[J].Journal of Cleaner Production,2017,143:1001-1010.
    [16]Hafner A,Sch?fer S,Hafner A.Comparative LCA study of different timber and mineral buildings and calculation method for substitution factors on building level[J].Journal of Cleaner Production,2017,167:630-642.
    [17]Li L J,Chen K H.Quantitative assessment of carbon dioxide emissions in construction projects:A case study in Shenzhen[J].Journal of Cleaner Production,2017,141:394-408.
    [18]Zhang X C,Wang F L.Life-cycle carbon emission assessment and permit allocation methods:A multi-region case study of China’s construction sector[J].Ecological Indicators,2017,72:910-920.
    [19]Huang B,Xing K,Pullen S.Carbon assessment for urban precincts:Integrated model and case studies[J].Energy&Buildings,2017,153:111-125.
    [20]Lee N,Tae S,Gong Y,et al.Integrated building life-cycle assessment model to support South Korea’s green building certification system(G-SEED)[J].Renewable&Sustainable Energy Reviews,2017,76:43-50.
    [21]Azzouz A,Borchers M,Moreira J,et al.Life cycle assessment of energy conservation measures during early stage office building design:A case study in London,UK[J].Energy&Buildings2017,139:547-568.
    [22]Li H X,Zhang L M,Mah D,et al.An integrated simulation and optimization approach for reducing CO2 emissions from on-site construction process in cold regions[J].Energy&Buildings,2017,138:666-675.
    [23]Schmidt M,Crawford R H.Developing an integrated framework for assessing the life cycle greenhouse gas emissions and life cycle cost of buildings[J].Procedia Engineering,2017,196:988-995.
    [24]Sim J,Sim J.The effect of new carbon emission reduction targets on an apartment building in South Korea[J].Energy&Buildings,2016,127:637-647.
    [25]Ye H,Ren Q,Hu X Y,et al.Modeling energy-related CO2emissions from office buildings using general regression neural network[J].Resources,Conservation&Recycling,2018,129:168-174.
    [26]Pan W,Qin H,Zhao Y S.Challenges for energy and carbon modeling of high-rise buildings:The case of public housing in Hong Kong[J].Resources Conservation&Recycling,2017,123:208-218.
    [27]Yang T,Pan Y Q,Yang Y K,et al.CO2 emissions in China’s building sector through 2050:A scenario analysis based on a bottom-up model[J].Energy,2017,128:208-223.
    [28]Li D,Cui P,Lu Y.Development of an automated estimator of lifecycle carbon emissions for residential buildings:A case study in Nanjing,China[J].Habitat International,2016,57:154-163.
    [29]Marzouk M,Ahmed E,Al-Gahtani K.Building information modeling-based model for calculating direct and indirect emissions in construction projects[J].Journal of Cleaner Production,2017,152:351-363.
    [30]Giri R K,Reddy K R.Sustainability assessment of two alternate earth-retaining structures[J].Geotechnical Special Publication,2015,256:2836-2845.
    [31]Yay A S E.Application of life cycle assessment(LCA)for municipal solid waste management:A case study of Sakarya[J].Journal of Cleaner Production,2015,94:284-293.
    [32]Souza D M D,Lafontaine M,Charron-Doucet F,et al.Comparative life cycle assessment of ceramic brick,concrete brick and cast-in-place reinforced concrete exterior walls[J].Journal of Cleaner Production,2016,137:70-82.
    [33]Starostka-Patyk M.New products design decision making support by SimaPro software on the base of defective products management[J].Procedia Computer Science,2015,65:1066-1074.
    [34]Homagain K,Shahi C,Luckai N,et al.Life cycle cost and economic assessment of biochar-based bioenergy production and biochar land application in Northwestern Ontario,Canada[J].Forest Ecosystems,2017,3(1):12-21.
    [35]李慧,邓权学,张静晓.全寿命周期视角下建筑减排策略--我国建筑业绿色发展考察[J].开放导报,2018(02):62-67.
    [36]史才军,王德辉,贾煌飞,等.石灰石粉在水泥基材料中的作用及对其耐久性的影响[J].硅酸盐学报,2017(11):1582-1593.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700