大齿圈成形磨削仿真及余量分配技术研究
详细信息    查看全文 | 推荐本文 |
  • 英文篇名:Form Grinding Simulation and Allowance Distribution Technique of Large Gear Ring
  • 作者:罗勇 ; 陈蔚芳 ; 陈奇伟 ; 苏川
  • 英文作者:Luo Yong;Chen Weifang;Chen Qiwei;Su Chuan;College of Mechanical and Electrical Engineering,Nanjing University of Aeronautics and Astronautics;
  • 关键词:齿圈 ; 磨削余量 ; 磨削热 ; 磨削力 ; 变形预测
  • 英文关键词:Gear ring;;Grinding allowance;;Grinding heat;;Grinding force;;Deformation prediction
  • 中文刊名:JXCD
  • 英文刊名:Journal of Mechanical Transmission
  • 机构:南京航空航天大学机电学院;
  • 出版日期:2018-06-15
  • 出版单位:机械传动
  • 年:2018
  • 期:v.42;No.258
  • 语种:中文;
  • 页:JXCD201806019
  • 页数:4
  • CN:06
  • ISSN:41-1129/TH
  • 分类号:96-99
摘要
大型齿圈成形磨削时不同的磨削余量会影响磨削力及磨削热的大小,从而引起不同的磨削变形,合理的余量分配对于保证齿圈加工质量意义重大。基于磨削接触区域模型、磨削力模型和磨削移动热源理论,分析了齿圈成形磨削在热力耦合作用下的变形预测仿真流程,建立了磨齿余量分配模型。以某大型齿圈为研究对象,以变形控制为目标,对不同磨齿余量进行了磨削变形仿真,得到了较优的余量分配值。研究方法对提高齿圈成形磨削加工精度具有一定的借鉴意义。
        The grinding allowance of large gear ring forming grinding will affect the grinding force and grinding heat,resulting in different grinding deformation,reasonable balance of allowance distribution means a lot to the quality of gear ring. Based on the grinding contact zone model,the grinding force model and the grinding and moving heat source theory,the simulation process of the deformation prediction of the ring gear grinding under the thermo-mechanical coupling is analyzed,and the optimization model of the gear grinding balance distribution is established. Taking a large gear ring as the research object,with the deformation control as the goal,the deformation of several sets of grinding gear is simulated and the optimal distribution value is obtained. The research method had some guidance significance on improving the precision of large gear ring forming grinding.
引文
[1]傅玉灿,田霖,徐九华,等.磨削过程建模与仿真研究现状[J].机械工程学报,2015(7):197-205.
    [2]周会娜.基于BP神经网络和遗传算法对工程陶瓷磨削力建模的研究[D].天津:天津大学,2007:12-59.
    [3]FUH K H,WANG S B.Force modeling and forecasting in creep feed grinding using improved bp neural network[J].International Journal of Machine Tools&Manufacture,1997,37(8):1167-1178.
    [4]任敬心.难加工材料的磨削[M].北京:国防工业出版社,1999:168-183.
    [5]李高敬,孙大琦.磨齿接触区[J].精密制造与自动化,1980(4):14-28.
    [6]刘镇昌.平面磨削几何接触长度的新公式[J].华中科技大学学报自然科学版,1983(4):111-114.
    [7]QI H S,ROWE W B,MILLS B.Experimental investigation of contact behaviour in grinding[J].Tribology International,1997,30(4):283-294.
    [8]XU X P,YU Y Q,XU H J.Effect of grinding temperatures on the surface integrity of a nickel-based superalloy[J].厦门大学学报(自然科学版),2002,129(s1):359-363.
    [9]LI X,OLOFSSON U.FZG Gear efficiency and pin-on-disc frictional study of sintered and wrought steel gear materials[J].Tribology Letters,2015,60(1):1-10.
    [10]CHEN X,ROWE W B,MCCORMACK D F.Analysis of the transitional temperature for tensile residual stress in grinding[J].Journal of Materials Processing Technology,2000,107(1):216-221.
    [11]吕成,张立文,牟正君,等.TC4钛合金锻件锻造过程三维热力耦合有限元模拟[J].锻压技术,2007,32(1):28-31.
    [12]JIN T,CAI G Q.Analytical thermal models of oblique moving heat source for deep grinding and cutting[J].Journal of Manufacturing Science&Engineering,2001,123(2):185-190.
    [13]明兴祖,严宏志,陈书涵,等.3D力热耦合磨齿模型与数值分析[J].机械工程学报,2008,44(5):17-24.
    [14]唐进元,杜晋,陈勇平.齿轮磨削中磨削力数学模型的研究[J].制造技术与机床,2008(1):73-76.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700